Практическая психология

На примере эволюции глюкокортикоидного рецептора (ГР) - белка, управляющего реакцией клеток на «гормон стресса» кортизол, - удалось показать, как эволюционные изменения могут становиться необратимыми. ГР приобрел свою нынешнюю функцию, попутно утратив прежнюю, свыше 400 млн лет назад в результате замены всего лишь двух ключевых аминокислот. Такое изменение вполне обратимо. Однако в ходе последующей эволюции рецептора в нем накопилось множество дополнительных мутаций, которые немного улучшили выполнение новой функции, но полностью лишили белок возможности вернуться к исходному состоянию.

«Закон» необратимости эволюции («закон Долло») был сформулирован еще в XIX веке и с тех пор многократно обсуждался биологами-теоретиками и философами. Такие обсуждения обычно остаются спекулятивными и опираются на общефилософские идеи и отдельные примеры из палеонтологии и сравнительной анатомии («некоторые наземные позвоночные вернулись в воду, но обратно в рыб не превратились - стало быть, эволюция необратима»). Между тем, данный вопрос важен для понимания такой базовой характеристики эволюции, как соотношение в ней «случайного», вызванного стечением обстоятельств (в том числе эволюционной историей организма), и «закономерного», диктуемого требованиями целесообразности (адаптивности). Если бы любое эволюционное изменение можно было легко обратить вспять, то естественный отбор - единственный фактор, придающий эволюционным изменениям «осмысленность» (адаптивную направленность), - смог бы быстро и эффективно оптимизировать строение организмов, «подгоняя» их к условиям среды, без всякой оглядки на их предшествующую эволюционную историю. Необратимость большинства эволюционных изменений, напротив, свидетельствовала бы о том, что эволюционная история организмов накладывает жесткие ограничения на возможности их дальнейшей эволюции. Между тем, реально оценить степень необратимости того или иного эволюционного события на практике весьма трудно.

Джозеф Торнтон (Joseph W. Thornton) из Орегонского университета и его коллеги на примере эволюции глюкокортикоидного рецептора позвоночных (ГР) наглядно продемонстрировали, как и почему эволюционные изменения, происходящие на уровне одной белковой молекулы, могут стать необратимыми. Исследователи использовали целый арсенал новейших методов. Начали они со сравнения аминокислотных последовательностей 60 разных рецепторов стероидных гормонов, имеющихся у современных организмов. Они реконструировали эволюционную историю ГР и восстановили аминокислотную последовательность этого белка, какой она была в важнейших узлах (точках ветвления) эволюционного древа позвоночных.

Выяснилось, что ключевые события в эволюции ГР произошли свыше 400 млн лет назад и были приурочены к отрезку между двумя узлами древа, соответствующими: 1) разделению предков хрящевых рыб и всех прочих челюстноротых позвоночных; 2) разделению линий лучеперых и лопастеперых рыб (предки последних по совместительству являются также и предками всех наземных позвоночных).

Восстановленные аминокислотные последовательности, соответствующие этим двум узлам, авторы назвали соответственно AncGR1 и AncGR2. Первый белок был у последнего общего предка всех челюстноротых (к челюстноротым относятся хрящевые рыбы, костные рыбы и их потомки - наземные позвоночные, они же тетраподы). Обладателем второго белка был последний общий предок всех костных рыб и тетрапод, который жил на 40 млн лет позже.

Затем авторы искусственно синтезировали гены ГР, которые должны были иметься у этих давно вымерших предков, и заставили их работать в культуре клеток китайского хомячка. Вместе с «воскрешенными» генами ГР в клетки была внедрена генетическая конструкция, содержащая заимствованный у светлячков ген фермента люциферазы (см.: reporter gene assays). Регуляторная область этого гена была сконструирована таким образом, чтобы синтез люциферазы зависел от активности ГР. В результате можно было по силе свечения оценивать эффективность реагирования ГР на те или иные стероидные гормоны. Пространственная структура «воскрешенных» ГР изучалась при помощи рентгеноструктурного анализа (см. X-ray crystallography).

Первая часть полученных результатов была опубликована два года назад в журнале Science (Ortlund et al., 2007. Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis // Science. V. 317. P. 1544-1548; полный текст - PDF, 410 Кб). Выяснилось, что белок AncGR1 представлял собой сравнительно слабо специализированный рецептор, который реагировал на широкий круг так называемых минералокортикоидов, в том числе альдостерон и деоксикортикостерон. Этот рецептор реагировал также и на кортизол, но значительно слабее. Белок AncGR2, напротив, был специализированным рецептором, избирательно реагирующим на кортизол (как и современные ГР человека и других наземных позвоночных).

Смена функции рецептора при переходе от AncGR1 к AncGR2 была связана с заменой 37 аминокислот в той области белковой молекулы, которая отвечает за связывание стероидного гормона. Ученые выяснили, что ключевую роль в смене функции сыграли две из 37 замен (см. рисунок). Первая из них (замена серина (S) пролином (P) в позиции 106; обозначается S106P) изменила конфигурацию активного центра белковой молекулы таким образом, что аминокислота, находящаяся в 111-й позиции, оказалась рядом с уникальной гидроксильной группой кортизола, которая отсутствует у других стероидных гормонов. Вторая замена (L111Q) произошла как раз в 111-й позиции и привела к тому, что молекула кортизола стала прикрепляться к активному центру ГР дополнительной водородной связью. В дальнейшем произошли еще три замены, которые усилили новую функцию ГР (избирательное связывание кортизола), снизив его сродство к минералокортикоидам. Эти три замены, однако, снизили также и стабильность пространственной конфигурации белковой молекулы. Чтобы эти три замены смогли зафиксироваться, должны были произойти еще две замены, которые авторы назвали «разрешающими» (permissive) - в том смысле, что они сгладили вредные эффекты других замен и позволили им закрепиться в ходе естественного отбора.

Таким образом, для смены функции ГР в общей сложности понадобилось 7 аминокислотных замен - две «ключевые», три «оптимизирующие» и две «разрешающие». Авторы экспериментально показали, что если внести в белок AncGR1 соответствующие 7 изменений, белок приобретает новую функцию (то есть начинает избирательно связывать кортизол и перестает реагировать на минералокортикоиды). Такой белок (AncGR1 с семью заменами) функционирует почти так же, как AncGR2, который, как мы помним, отличается от AncGR1 не семью, а 37 заменами. Остальные 30 замен, по всей видимости, либо являются нейтральными (то есть зафиксировались случайно в результате генетического дрейфа), либо они способствовали оптимизации новой структуры и функции белка, но лишь в очень небольшой степени.

В новой работе, опубликованной в последнем номере журнала Nature, авторы показали, что некоторые из этих 30 «не очень нужных» замен, без которых белок ГР вполне мог бы обойтись, имели важный побочный эффект. Как выяснилось, они закрыли для белка возможность возврата к исходной функции, то есть сделали произошедшее ранее изменение эволюционно необратимым.

Естественный отбор не умеет заглядывать в будущее. Он не может зафиксировать вредную мутацию только потому, что она окажется полезной позже, когда зафиксируется следующая мутация. Поэтому возможны только такие эволюционные траектории, в которых каждый единичный шаг является либо полезным здесь и сейчас, либо, на худой конец, нейтральным. Пока новая функция ГР обеспечивалась только семью аминокислотными заменами, о которых говорилось выше (двумя «ключевыми», тремя «оптимизирующими» и двумя «разрешающими»), эволюция ГР еще могла повернуть вспять. Для этого было бы достаточно изменить направленность отбора. Допустим, древним позвоночным - предкам костных рыб и тетрапод - вдруг стало бы выгодно, чтобы их ГР снова начал реагировать на минералокортикоиды. В этом случае могли бы сначала вернуться в исходное состояние «оптимизирующие» мутации. Это привело бы к небольшому увеличению чувствительности ГР к минералокортикоидам, и поэтому такое изменение могло быть поддержано отбором. В дальнейшем можно было бы ожидать обращения вспять двух «ключевых» мутаций - это привело бы к полному восстановлению прежней функции.

Как мы уже знаем, если внести в белок AncGR1 семь мутаций, он меняет функцию: начинает избирательно реагировать на кортизол и перестает обращать внимание на минералокортикоиды. Понятно, что если вернуть эти семь аминокислот в исходное состояние, белок вернется к своей исходной функции. На этом этапе эволюция еще обратима. Однако когда авторы вернули в исходное состояние те же семь аминокислот в белке AncGR2, никакого возврата к прежней функции не произошло. Вместо этого получился абсолютно бесполезный белок, который не реагировал ни на кортизол, ни на минералокортикоиды. Причина, очевидно, кроется в тех 30 «дополнительных» мутациях, которые отличают AncGR2 от AncGR1.

Авторы провели всесторонний анализ этих 30 аминокислотных замен и пришли к выводу, что как минимум пять из них мешают возврату белковой молекулы к исходной пространственной конфигурации, необходимой для связывания минералокортикоидов. «Пользы» от этих замен, по-видимому, было не очень много: они лишь слегка повысили стабильность новой конфигурации, необходимой для связывания кортизола. Но они тем не менее зафиксировались, потому что естественный отбор «видит» только сиюминутную выгоду, пусть и небольшую, и не может заглянуть даже на шаг вперед. Таким образом, отрезание пути к отступлению - своеобразное эволюционное сжигание мостов - оказалось случайным побочным эффектом мелких, второстепенных эволюционных «работ» по оптимизации новой функции.

Возврат этих пяти мутаций в исходное состояние крайне маловероятен, потому что от такого возврата организм не получает никакой мгновенной выгоды: новая функция начинает выполняться чуть хуже, старая не восстанавливается. А пока эти пять мутаций не вернутся в исходное состояние, остается невозможной (= однозначно вредной) реверсия тех семи аминокислотных замен, которые обеспечили смену функции белка.

Сколько интересных возможностей было безвозвратно потеряно в ходе эволюции из-за «недальновидности» ее главного распорядителя - естественного отбора? Точного ответа на этот вопрос пока нет, но не исключено, что потерянных возможностей было гораздо больше, чем реализованных.

На примере эволюции глюкокортикоидного рецептора (ГР) — белка, управляющего реакцией клеток на «гормон стресса» кортизол, — удалось показать, как эволюционные изменения могут становиться необратимыми. ГР приобрел свою нынешнюю функцию, попутно утратив прежнюю, свыше 400 млн лет назад в результате замены всего лишь двух ключевых аминокислот. Такое изменение вполне обратимо. Однако в ходе последующей эволюции рецептора в нем накопилось множество дополнительных мутаций, которые немного улучшили выполнение новой функции, но полностью лишили белок возможности вернуться к исходному состоянию.

Первая часть полученных результатов была опубликована два года назад в журнале Science (Ortlund et al., 2007. Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis // Science . V. 317. P. 1544-1548; полный текст — PDF, 410 Кб). Выяснилось, что белок AncGR1 представлял собой сравнительно слабо специализированный рецептор, который реагировал на широкий круг так называемых минералокортикоидов , в том числе альдостерон и деоксикортикостерон. Этот рецептор реагировал также и на кортизол, но значительно слабее. Белок AncGR2, напротив, был специализированным рецептором, избирательно реагирующим на кортизол (как и современные ГР человека и других наземных позвоночных).

Смена функции рецептора при переходе от AncGR1 к AncGR2 была связана с заменой 37 аминокислот в той области белковой молекулы, которая отвечает за связывание стероидного гормона. Ученые выяснили, что ключевую роль в смене функции сыграли две из 37 замен (см. рисунок). Первая из них (замена серина (S) пролином (P) в позиции 106; обозначается S106P) изменила конфигурацию активного центра белковой молекулы таким образом, что аминокислота, находящаяся в 111-й позиции, оказалась рядом с уникальной гидроксильной группой кортизола, которая отсутствует у других стероидных гормонов. Вторая замена (L111Q) произошла как раз в 111-й позиции и привела к тому, что молекула кортизола стала прикрепляться к активному центру ГР дополнительной водородной связью. В дальнейшем произошли еще три замены, которые усилили новую функцию ГР (избирательное связывание кортизола), снизив его сродство к минералокортикоидам. Эти три замены, однако, снизили также и стабильность пространственной конфигурации белковой молекулы. Чтобы эти три замены смогли зафиксироваться, должны были произойти еще две замены, которые авторы назвали «разрешающими» (permissive) — в том смысле, что они сгладили вредные эффекты других замен и позволили им закрепиться в ходе естественного отбора.

Таким образом, для смены функции ГР в общей сложности понадобилось 7 аминокислотных замен — две «ключевые», три «оптимизирующие» и две «разрешающие». Авторы экспериментально показали, что если внести в белок AncGR1 соответствующие 7 изменений, белок приобретает новую функцию (то есть начинает избирательно связывать кортизол и перестает реагировать на минералокортикоиды). Такой белок (AncGR1 с семью заменами) функционирует почти так же, как AncGR2, который, как мы помним, отличается от AncGR1 не семью, а 37 заменами. Остальные 30 замен, по всей видимости, либо являются нейтральными (то есть зафиксировались случайно в результате генетического дрейфа), либо они способствовали оптимизации новой структуры и функции белка, но лишь в очень небольшой степени.

В новой работе, опубликованной в последнем номере журнала Nature , авторы показали, что некоторые из этих 30 «не очень нужных» замен, без которых белок ГР вполне мог бы обойтись, имели важный побочный эффект. Как выяснилось, они закрыли для белка возможность возврата к исходной функции, то есть сделали произошедшее ранее изменение эволюционно необратимым.

Естественный отбор не умеет заглядывать в будущее. Он не может зафиксировать вредную мутацию только потому, что она окажется полезной позже, когда зафиксируется следующая мутация. Поэтому возможны только такие эволюционные траектории, в которых каждый единичный шаг является либо полезным здесь и сейчас, либо, на худой конец, нейтральным. Пока новая функция ГР обеспечивалась только семью аминокислотными заменами, о которых говорилось выше (двумя «ключевыми», тремя «оптимизирующими» и двумя «разрешающими»), эволюция ГР еще могла повернуть вспять. Для этого было бы достаточно изменить направленность отбора. Допустим, древним позвоночным — предкам костных рыб и тетрапод — вдруг стало бы выгодно, чтобы их ГР снова начал реагировать на минералокортикоиды. В этом случае могли бы сначала вернуться в исходное состояние «оптимизирующие» мутации. Это привело бы к небольшому увеличению чувствительности ГР к минералокортикоидам, и поэтому такое изменение могло быть поддержано отбором. В дальнейшем можно было бы ожидать обращения вспять двух «ключевых» мутаций — это привело бы к полному восстановлению прежней функции.

Как мы уже знаем, если внести в белок AncGR1 семь мутаций, он меняет функцию: начинает избирательно реагировать на кортизол и перестает обращать внимание на минералокортикоиды. Понятно, что если вернуть эти семь аминокислот в исходное состояние, белок вернется к своей исходной функции. На этом этапе эволюция еще обратима. Однако когда авторы вернули в исходное состояние те же семь аминокислот в белке AncGR2, никакого возврата к прежней функции не произошло. Вместо этого получился абсолютно бесполезный белок, который не реагировал ни на кортизол, ни на минералокортикоиды. Причина, очевидно, кроется в тех 30 «дополнительных» мутациях, которые отличают AncGR2 от AncGR1.

Авторы провели всесторонний анализ этих 30 аминокислотных замен и пришли к выводу, что как минимум пять из них мешают возврату белковой молекулы к исходной пространственной конфигурации, необходимой для связывания минералокортикоидов. «Пользы» от этих замен, по-видимому, было не очень много: они лишь слегка повысили стабильность новой конфигурации, необходимой для связывания кортизола. Но они тем не менее зафиксировались, потому что естественный отбор «видит» только сиюминутную выгоду, пусть и небольшую, и не может заглянуть даже на шаг вперед. Таким образом, отрезание пути к отступлению — своеобразное эволюционное сжигание мостов — оказалось случайным побочным эффектом мелких, второстепенных эволюционных «работ» по оптимизации новой функции.

Возврат этих пяти мутаций в исходное состояние крайне маловероятен, потому что от такого возврата организм не получает никакой мгновенной выгоды: новая функция начинает выполняться чуть хуже, старая не восстанавливается. А пока эти пять мутаций не вернутся в исходное состояние, остается невозможной (= однозначно вредной) реверсия тех семи аминокислотных замен, которые обеспечили смену функции белка.

Сколько интересных возможностей было безвозвратно потеряно в ходе эволюции из-за «недальновидности» ее главного распорядителя — естественного отбора? Точного ответа на этот вопрос пока нет, но не исключено, что потерянных возможностей было гораздо больше, чем реализованных.

ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ - скорее правило, сформулированное белы, палеонтологом Долло (1893); раз утраченный в филогенетическом ряду орган или не восстанавливается в процессе дальнейшего филогенетического развития. В настоящее допускается частичный возврат к предковому состоянию, связанный с переходом к прежнему образу жизни. Однако полностью утраченных структур и повторное появление предковых видов исключается. Син.: закон Долло .

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ" в других словарях:

    ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ Экологический словарь

    ЗАКОН НЕОБРАТИМОСТИ ЭВОЛЮЦИИ - согласно этому закону, организм никогда не возвращается к прежнему состоянию, уже осуществленному в ряде его предков … Словарь ботанических терминов

    Закон необратимости эволюции Долло - организм (популяция, вид) не может вернуться к прежнему состоянию, бывшему в ряду его предков, даже вернувшись в среду их обитания. Возможно приобретение лишь неполного ряда внешних, но не функциональных сходств со своими предками. Закон… … Начала современного естествознания

    Закон (принцип) необратимости эволюции - * закон (прынцып) незваротнасці эвалюцыі * law of evolution irreversibility … Генетика. Энциклопедический словарь

    ПРАВИЛО НЕОБРАТИМОСТИ ЭВОЛЮЦИИ - см. Закон Долло. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    Син. термина закон необратимости эволюции. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    ЗАКОН ДОЛЛО - сформулированный бельгийским палеонтологом дарвинистом Л. Долло (1893) закон, согласно которому эволюционные процессы необратимы, организм (популяция, вид) не может вернуться к прежнему состоянию, уже осуществленному в ряде его предков. Следует,… … Экологический словарь

    Закон экологический - свод фундаментальных положений экологии и природопользования. Экологические законы и правила были обобщены и сведены в единую систему Н.Ф. Реймерсом, по мнению которого экологические законы представляют собой теоремы, которые могут быть доказаны … Экология человека

    - (закон необратимости эволюции), закономерность филогенеза: организмы, возвращаясь в процессе эволюции в среду обитания далёких предков, не могут стать абсолютно похожими на них. Так, вторично приспособившиеся к жизни в воде ихтиозавры не стали… … Естествознание. Энциклопедический словарь

    Закон необратимости эволюции, впервые чётко сформулированный в 1893 бельгийским палеонтологом Л. Долло. Согласно Долло, организм не может вернуться, хотя бы частично, к прежнему состоянию, которое уже пройдено рядом его предков. Например … Большая советская энциклопедия

Организм и среда.

Область распространения живых существ на Земле образует особую оболочку, называемую биосферой. Биосфера возникла с появлением на Земле живых существ: она занимает всю поверхность суши, все водоёмы Земли – океаны, моря, озёра, реки, проникает в атмосферу – большинство организмов поднимается в воздух более чем на 50 – 70 м, а споры бактерий и грибов заносятся на высоту до 22 км. Жизнь проникается в литосферу, где она концентрируется в основном в поверхности слоёв на глубине до 6-8 м, но некоторые бактерии найдены в слоях на глубине до 2-3 км.

Условия существования на земле очень разнообразны и определяются факторами как неорганического, так и органического порядка. К неорганическим факторам относятся: температура, влажность, солёность воды, глубина бассейна, давление. К органическим те взаимоотношения, в которые вступают организмы между собой. Эти взаимоотношения в первую очередь выражаются пещевыми связями. Каждый вид обладает своим ареалом, занимая пространственно различные части земно поверхности. Все организмы на земле живут сообществами, называемыми биоценозами. Биоценоз, представляет собой комплекс или сообщество организмов, живущих совместно при определённом сочетании разнообразных факторов среды. Каждый биоценоз занимает определённую территорию – биотоп. Все виды в пределах своего биотопа образуют более или менее обособленные поселения – популяции. Каждая популяция реально существует как определённое единство состоящее из совокупности особей, в течение длительного времени населяющих определённую территорию и способных к воспроизводству потомства. Соревнование особей и естественный отбор протекают прежде всего внутри популяции.

Организмы, входящие в состав биоценоза, по-разному реагируют на колебания того или иного фактора среды – солёности, температуры, давления. Одни могут существовать при широких колебаниях одного из факторов среды и тогда прибавляется приставка «эври»; другие не переносят даже значительного изменения этого фактора и тогда прибавляется приставка «стено».

Итак, если это глубина - эврибатный, стенобатный;

Солёность – эвригалинный, стеногалинный;

Температура – эвритермный, стенотермный.

Все палеонтологические исследования указывают, что организмы, даже оказавшиеся в условиях существования предков, не возвращаются к предковому состоянию. Этот закон эволюции был сформулирован Ч. Дарвиным, но получил известность благодаря бельгийскому палеонтологу Л. Долло. Закон звучит так – вид, однажды исчезнувший, вновь не может появиться.

Долло дополнил содержание, сформулировав мысль о прерывистости эволюции, т.е. о наличии в ходе развития организма резких скачков и непременным условием вымирания после прохождения определённого цикла развития. Правда, иногда наблюдается появление признаков, когда-то имевшихся у предков, затем исчезнувших у последующих организмов, а потом вновь появившихся у потомков. Но такие признаки, как правило являются вторичными, похожими только внешне. Закон необратимости эволюции лежит в основе выделения всех стратиграфических единиц от эр до зон. Для каждой стратиграфической единицы характерны свои группы организмов, которые после вымирания вновь не могут возникнуть. Эволюционный процесс необратим возможно только возникновение конвергентно сходных форм.

Необратимость эволюции (Закон Л. Долло)

Закон необратимости эволюции, известный под названием закона Долло (1893) был выражен этим ученым следующими словами: "организм не может вернуться, хотя бы частично, к прежнему состоянию, которое было уже осуществлено в ряду его предков". Некоторые ученые указывали, что этот закон был известен еще до Долло. И действительно, эволюция предполагается необратимой в исследованиях В. О. Ковалевского. Тем не менее, именно Долло дал наиболее четкую, хотя и очень краткую, формулировку этого закона. Водной из своих работ (1905, стр. 443) он писал, что организм никогда не возвращается точно к прежнему состоянию даже тогда, когда он оказывается в условиях существования, тождественных тем, через которые прошли его предки. Прошлое, говорил Долло, неразрушимо, и потому организм всегда сохраняет какой-нибудь след последовательных этапов, которые были пройдены предками вида. Несмотря на то, что в настоящее время этот закон оспаривается некоторыми биологами, едва ли можно сомневаться в том, что он соответствует действительности. Долло справедливо утверждал, что необратимость не есть лишь эмпирический закон, основанный только на замеченных фактах (1913). Эволюция, по его мнению, есть суммирование конкретных индивидуальных вариаций, совершившееся в определенном порядке. Чтобы представить ее обратимость, надо допустить возможность вмешательства причин, точно противоположных причинам, вызвавшим и закрепившим индивидуальные вариации, из которых получилась первоначальная серия трансформаций, и притом принять, что эти причины действовали в точно обратной последовательности. Такой ход явлений совершенно неосуществим.

Эта аргументация вполне правильна и убедительна. Для противников идеи независимости эволюции от внешних условий необратимость эволюции бесспорна. Однако нельзя понимать закон необратимости как полную невозможность возвращения в процессе эволюции к признакам, которые существовали у предков рассматриваемого вида, а после исчезли; нельзя отрицать возможность восстановления, в измененном виде, некоторых отдельных структур и особенностей, если они сохранились в онтогенезе. Совершенно исключается полное восстановление состояния, некогда существовавшего у представителей данной филогенетической линии, а затем утраченного. Таким образом, закон необратимости был и остается одним из самых общих законов филогенетического развития.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: