Практическая психология

Средняя длина свободного пробега молекулы равна отношению пути, пройденного молекулой за 1 с, к числу происшедших за это время столкновений: = / =1/(42r 2 n 0).

24.Внутренняя энергия идеального газа.

Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

Внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния.

Внутренняя энергия идеального газа пропорциональна массе газа и его термодинамической температуре.

Работа газа при расширении.

Пусть в цилиндре под поршнем находится газ, занимающий объём V под давлением p. Площадь поршня S. Сила, с которой газ давит на поршень, F=pS. При расширении газа поршень понимается на высоту dh, при этом газ совершает работу A=Fdh=pSdh. Но Sdh=dV – увеличение объёма газа. Следовательно элементарная работа A=pdV. Полную работу A, совершаемую газом при изменении его объёма от V1 до V2 найдём интегрированием

Результат интегрирования зависит от процесса, протекающего в газах.

При изохорном процессе V=const, следовательно, dV=0 и A=0.

При изобарном процессе p=const, тогда

Работа при изобарном расширении газа равна произведению давления газа на увеличение объёма.

При изотермическом процессе T=const. p=(mRT)/(MV).

Количество теплоты.

Энергия, переданная газу путём теплообмена, называется количеством теплоты Q .

При сообщении системе бесконечно малого количества теплоты Q его температура изменится на dT.

26. Теплоёмкостью С системы называют величину, равную отношению сообщенного системе количества теплоты Q к изменению температуры dT системы: C=Q/dT.

Различают удельную теплоёмкость (теплоёмкость 1 кг вещества) c=Q/(mdT) и молярную теплоёмкость (теплоёмкость 1 моль вещества) c=Mc.

При различных процессах, протекающих в термодинамических системах, теплоёмкости будут различны.

Больцмана распределение

Больцмана распределение , статистически равновесная функция распределения по импульсам р и координатам r частиц идеального газа, молекулы которого движутся по законам классической механики, во внешнем потенциальном поле:

Здесь p 2 /2m - кинетическая энергия молекулы массой m, U(ν) - её потенциальная энергия во внешнем поле, Т - абсолютная температуpa газа. Постоянная А определяется из условия, что суммарное число частиц, находящихся в различных возможных состояниях, равно полному числу частиц в системе (условие нормировки).
Больцмана распределение представляет собой частный случай канонического распределения Гиббса для идеального газа во внешнем потенциальном поле, т. к. при отсутствии взаимодействия между частицами распределение Гиббса распадается на произведение Больцмана распределения для отдельных частиц. Больцмана распределение при U=0 даёт Максвелла распределение. Фкнкцию распределения (1) иногда называют распределением Максвелла - Больцмана, а распределением Больцмана называют функцию распределения (1), проинтегрированную по всем импульсам частиц и представляющую собой плотность числа частиц в точке ν:

где n 0 - плотность числа частиц системы в отсутствии внешнего поля. Отношение плотностей числа частиц в различных точках зависит от разности значений потенциальной энергии в этих точках

где ΔU= U(ν 1)-U(ν 2). В частности, из (3) следует барометрическая формула, определяющая распределение по высоте газа в поле тяготения над земной поверхностью. В этом случае ΔU=mgh, где g - ускорение свободного падения, m - масса частицы, h - высота над земной поверхностью. Для смеси газов с различной массой частиц Больцмана распределение показывает, что распределение парциальных плотностей частиц для каждого из компонентов независимо от других компонентов. Для газа во вращающемся сосуде U (r) определяет потенциал поля центробежных сил U (r)=-mω 2 r 2 /2, где ω - угловая скорость вращения. На этом эффекте основано разделение изотопов и высокодисперсных систем при помощи ультрацентрифуги.
Для квантовых идеальных газов состояние отдельных частиц определяется не импульсами и координатами, а квантовыми уровнями энергии Ε i частицы в поле U(r). В этом случае среднее число частиц в i-том квантовом состоянии, или среднее число заполнения, равно:

где μ - химический потенциал, определяемый из условия, что суммарное число частиц на всех квантовых уровнях Ε i равно полному числу частиц N в системе: Σin i =N. Формула (4) справедлива при таких температурахpax и плотностях, когда среднее расстояние между частицами значительно больше длины волны де Бройля, соответствующей средней тепловой скорости, т. е. когда можно пренебречь не только силовым взаимодействием частиц, но и их взаимным квантовомеханическим влиянием (нет квантового вырождения газа. (см. Вырожденный газ ). Таким образом, Больцмана распределение есть предельный случай как Ферми - Дирака распределения, так и Бозе - Эйнштейна распределения для газов малой плотности.

www.all-fizika.com

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

БОЛЬЦМАН (Boltzmann) Людвиг (1844-1906), австрийский физик, один из основателей статистической физики и физической кинетики, иностранный член-корреспондент Петербургской АН (1899). Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Дал (1872) статистическое обоснование второго начала термодинамики. Вывел один из законов теплового излучения (закон Стефана - Больцмана).

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW() обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

.

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

Найдем функцию вероятности распределения частиц f() классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f() = c onst.

Используя условие нормировки найдем, что

,

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW() обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f() ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N — среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS 2 и нижнее dS 1 основания объема dV, не будут равны друг другу (рис. 2.2).

В этом случае разность сил давления dF на основания dS 1 и dS 2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G — сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = — n dW p .

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

— ndW p = kTdn или .

После преобразований найдем, что

,

где ℓ n n o — постоянная интегрирования (n o — концентрации частиц в том месте пространства, где W p =0).

После потенцирования, получим

.

Вывод: в состоянии термодинамического равновесия концентрация (плотность) частиц идеального газа, находящегося во внешнем силовом поле, изменяется по закону, определяемому формулой (2.11), которую называют распределением Больцмана .

С учетом (2.11) функция вероятности распределения молекул в поле силы тяжести принимает вид

.

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

.

Для идеального газа давление отличается от концентрации только постоянным множителем kT (P=nkT).

Следовательно, для таких газов давление

,

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот — 78,1 %; кислород — 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км — слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h W p = m o gh , где m o — масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (W p =0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

.

Формула (2.15) называется барометрической формулой ; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (

4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g — гравитационная постоянная; М з — масса Земли; m o — масса частицы воздуха; r — расстояние частицы от центра Земли.

При r ® ¥ W p =0. Поэтому распределение Больцмана (2.11) принимает вид

,

files.lib.sfu-kras.ru

11.2 Закон распределения молекул идеального газа во внешнем силовом поле

При рассмотрении кинетической теории газов и закона распределения Максвелла предполагалось, что на молекулы газа не действуют никакие силы, за исключением ударов молекул. Поэтому, молекулы равномерно распределяются по всему сосуду. В действительности молекулы любого газа всегда находятся в поле тяготения Земли. Вследствие этого, каждая молекула массой m испытывает действие силы тяжести f =mg.

Выделим горизонтальный элемент объема газа высотой dh и площадью основания S (рис. 11.2). Считаем газ однородным и температуру его постоянной. Число молекул в этом объеме равно произведению его объема dV=Sdh на число молекул в единице объема. Полный вес молекул в выделенном элементе равен

Действие веса dF вызывает давление, равное

минус — т.к. при увеличении dh давление уменьшается. Согласно основному уравнению молекулярно-кинетической теории

Приравнивая правые части (11.2) и (11.3), получаем


или

Интегрируя это выражение в пределах от до h (соответственно концентрация изменяется от до n):


получим

Потенцируя полученное выражение, находим

Показатель степени при exp имеет множитель , который определяет приращение потенциальной энергии молекул газа. Если переместить молекулу с уровня до уровня h, то изменение ее потенциальной энергии будет

Тогда уравнение для концентрации молекул преобразуется к виду

Это уравнение отображает общий закон Больцмана и дает распределение числа частиц в зависимости от их потенциальной энергии. Он применим к любой системе частиц, находящихся в силовом поле, например в электрическом.

physics-lectures.ru

Закон больцмана о распределении частиц во внешнем потенциальном поле

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

Так как а , то (2.5.1) можно представить в виде

На рисунке 2.11 показана зависимость концентрации различных газов от высоты. Видно, что число более тяжелых молекул с высотой убывает быстрее, чем легких.

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Алименты в Казахстане: порядок истребования и необходимые процедуры В зaвисимости от различных жизненных ситуаций может возникнуть необходимость в выплате или истребовании алиментов. В данной статье вы узнаете, что такое алименты, […]

  • Обучение по тепловым энергоустановкам - ПТЭТЭ Срок обучения: от 36 до 72 часов Стоимость: от4000 рублей за специалиста Очный и заочный формат обучения Вам требуется обучить персонал по правилам работы в тепловых энергоустановках? […]
  • Георгиевский - Правила выполнения архитектурно-строительных чертежей О. В. ГеоргиевскийПравила выполнения архитектурно-строительныхчертежейОлег Викторович Георгиевский,кандидат технических наук,профессор кафедры начертательной […]
  • Упрощение выражений Свойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с помощью этих свойств упрощать […]
  • Подборка по базе: 416_3- Контр. и самост. раб. по физике. 8кл. к уч. Перышкина_201 .

    1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @


    Если воспользоваться выражением р = nkT, то можно привести барометрическую формулу к виду:
    з

    десь n – концентрация молекул на высоте h, n 0 – то же у поверхности Земли. Так как М = m 0 N A , где m 0 – масса одной молекулы , а R = k N A , то мы получим П = m 0 gh – это потенциальная энергия одной молекулы в поле тяготения. Поскольку kT‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›
    Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.
    1. 6. Распределение Максвелла молекул идеального газа по скоростям. @
    При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать

    П
    остоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функцию f(), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равные d, то на каждый интервал скорости будет приходиться некоторое число молекул dN(), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

    Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от  до + d. Это число - dN()/N= f()d. Применяя методы теории вероятностей, Максвелл нашел вид для функции f()



    Данное выражение - это закон о распределении молекул идеального газа по скоростям. Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f()=0 при =0 и достигает максимума при некотором значении  в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN()/N, скорости которых лежат в интервале d и равное f()d, находится как площадь заштрихованной полоски основанием dv и высотой f(), показанной на рис.1.4. Вся площадь, ограниченная кривой f() и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости , то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

    Скорость  в, при которой функция f() достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функции f(v) ′ = 0 следует, что

    Н

    а рисунке 1.4. отмечена еще одна характеристика – средняя арифметическая скорость молекулы. Она определяется по формуле:


    Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.
    2. ОСНОВЫ ТЕРМОДИНАМИКИ

    2.1. Внутренняя энергия. @
    Важной характеристикой любой термодинамической системы является ее внутренняя энергия – энергия хаотического теплового движения частиц системы - молекул, атомов и энергия их взаимодействия. К внутренней энергии не относится кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях. Внутренняя энергия системы в определенном состоянии не зависит от того , как система пришла в это состояние (т.е. от пути перехода), а определяется только значениями термодинамических параметров в этих состояниях. В термодинамике имеются и другие функции, удовлетворяющие этим условиям, их называют функциями состояния системы. Таким образом, внутренняя энергия – это функция состояния.

    Для дальнейших рассуждений нам понадобится понятие числа степеней свободы – это число независимых переменных (координат), полностью определяющих положение системы в пространстве. Например, молекулу одноатомного газа можно рассматривать как материальную точку, обладающую тремя степенями свободы поступательного движения (координаты x,y,z) (рис.2.1. а). Молекула двухатомного газа, рассматриваемая в классической механике как совокупность двух материальных точек, жестко связанных между собой, имеет уже 5 степеней свободы. У нее имеется 3 степени свободы поступательного движения центра масс и 2 степени вращательного, связанного с поворотами на углы  и  (рис. 2.1. б). Эти углы полярный угол θ и азимутальный угол φ, определяют ориентацию оси молекулы. В данном случае, на первый взгляд кажется, что необходимо также задавать угол поворота ψ молекулы относительно собственной оси. Но вращение двухатомной молекулы вокруг своей собственной оси ничего не меняет в положении молекулы, так как структуры у материальных точек атомов нет и, поэтому, этот угол не нужен для задания положения такой молекулы в пространстве. Трехатомные молекулы (рис. 2.1.в), в которых атомы связаны жестко между собой, имеют 6 степеней свободы, так как здесь уже необходим дополнительный угол ψ.

    Если расстояния между атомами меняются , т.е. атомы в молекуле колеблются, то для задания этих расстояний необходимы дополнительные координаты - колебательные степени свободы и общее число степеней свободы будет больше 6. Для много-атомных молекул число степеней может быть намного больше 6.

    Р

    Рис.2.1. Степени свободы: а) одноатомной молекулы;б) двухатомной молекулы;в) трех- и многоатомной молекулы.

    анее мы получили формулу для средней кинетической энергии поступательного движения одно-атомной молекулы идеального газа следующее выражение: ‹ε 0 › = 3kT/2. Но у одно-атомной молекулы имеется 3 степени свободы поступательного движения и ни одна не имеет преимущества перед другими. Поэтому на каждую степень в среднем должна приходиться одинаковая энергия, равная 1/3 общей: ‹ε 1 › = kT/2. Так как, очевидно, что все степени свободы равноценны, то в классической статистической физике существует закон Больцмана о равномерном распределении энергии по степеням свободы. Он формулируется так: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная кТ/2, а на каждую колебательную степень свободы – кТ. Колебательная степень свободы обладает вдвое большей энергией, так как на нее приходится не только кинетическая, но и потенциальная энергия взаимодействия. Таким образом, средняя энергия любой молекулы ‹ε› = ikT/2, где i - это сумма поступательных, вращательных и удвоенного числа колебательных степеней свободы.

    Из этого закона получаем, что внутренняя энергия U М одного моля идеального газа равна U М =ikTN A /2 = iRT/2, а внутренняя энергия U газа массы m равна U = ikTN/2 = iRTm/2M (здесь мы учитываем, что потенциальная энергия взаимодействия молекул равна 0, общее число молекул в одном моле равно N A , N= mN A /M и kN A =R).
    2.2. Первое начало термодинамики. @

    Обмен энергией между термодинамической системой и внешней средой может осуществляться двумя качественно различными способами: путем совершения работы и путем теплообмена.

    Изменение энергии системы, происходящее под действием сил измеряется работой. Если термодинамическая система совершает работу против внешних сил, то работа считается положительной (А>0). Если работу над системой совершают внешние силы , то она считается отрицательной (А
    Изменение энергии системы, происходящее в результате теплообмена, определяется количеством переданной или отнятой теплоты Q. При теплообмене тела систем должны находится в тепловом контакте, т.е. молекулы этих систем должны иметь возможность сталкиваться при своем движении и обмениваться своей кинетической энергией. Если энергия (теплота) передается системе, то Q>0, если она от системы отнимается, то Q
    ΔU = Q – A или Q = ΔU + A

    В дифференциальной форме (для малых изменений величин) это запишется следующим образом:

    δQ = dU + δA ,

    где δQ - бесконечно малое количество теплоты, dU – бесконечно малое изменение внутренней энергии, δA – элементарная работа. Это уравнение выражает первое начало термодинамики: теплота, подводимая к системе, расходуется на изменение ее внутренней энергии и на совершение работы против внешних сил. Знак δ в δQ и δА означают, что данные элементарные приращения не являются полными дифференциалами и, следовательно, А и Q не являются функциями состояния.

    Пусть газ заключен в цилиндрический сосуд, закрытый легко скользящим поршнем площадью S. Найдем работу газа при расширении его объема δA = Fdl = pSdl = pdV , где F – сила, с которой газ действует на поршень, dl – перемещение поршня. Если зависимость р(V) изобразить графически , то общая работа при изменении объема от V 1 доV 2 равна площади фигуры, ограниченной кривой р(V), осью абсцисс и прямыми V= V 1 и V= V 2 (рис.2.2.). Графически можно изображать лишь равновесные процессы, и все количественные выводы термодинамики строго применимы только к равновесным процессам. При достаточно медленном протекании реальные процессы можно приближенно считать равновесными. Первое начало термодинамики выполняется во всех процессах, связанных с обменом энергией и совершением работы.
    2. 3. Теплоемкость. @

    Одним из основных свойств тел, которое широко используется в термодинамике, является теплоемкость. Теплоемкостью тела называется физическая величина, численно равная отношению теплоты δQ, сообщаемой телу, к изменению температуры тела в рассматриваемом термодинамическом процессе. Теплоемкость тела зависит от его химического состава, массы и термодинамического состояния, а также от вида процесса, в котором поступает теплота. Тепловые свойства однородных тел характеризуются понятиями удельной и молярной теплоемкостей.

    Удельная теплоемкость вещества – величина, численно равная количеству теплоты, необходимому для нагревания единицы массы вещества на 1 Кельвин при данном процессе , единица измерения – Дж/(кг∙К)

    М



    олярная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания одного моля вещества на 1К, т.е. С =сМ, где М – молярная масса вещества. Теплоемкости одного и того же вещества при разных термодинамических процессах нагревания различаются.

    Найдем молярную теплоемкость системы в изобарном процессе, для этого возьмем один моль газа и сообщим ему количество теплоты δQ М. Согласно определению молярной теплоемкости и первому началу термодинамики можем

    записать (здесь δА М - работа одного моля газа)


    Если газ нагревается при постоянном объеме, то dV=0 и δА М =0. Сообщаемая газу теплота идет только на увеличение его внутренней энергии и теплоемкость для изохорного процесса


    Откуда следует, что

    И

    з уравнения Менделеева – Клапейрона для изобарного процесса можно получить pdV М = RdT. Таким образом, pdV М /dT = R. Из этой формулы следует физический смысл газовой постоянной: она численно равна работе (δА М = pdV М), совершаемой одним молем идеального газа, при его изобарном нагревании на 1 К. После замены получаем:

    Э

    то выражение называется уравнением Майера, оно показывает, что молярная теплоемкость при постоянном давлении С р всегда больше, чем теплоемкость при постоянном объеме C v на величину, равную молярной газовой постоянной. Это объясняется тем, что при постоянном объеме все подводимое тепло идет только на увеличение внутренней энергии, т.е. повышение Т, а при постоянном давлении кроме этого требуется еще дополнительное количество теплоты на совершение работы газом против внешних сил при его расширении.

    Заменив в Барометрической формуле p через nkT получим закон изменения концентрации газа с высотой:

    Где n 0 – концентрация газа на высоте h=0

    Преобразуем, заменив M/R равным ему отношению m 0 /k

    Где m 0 - масса одной молекулы, k – постоянная Больцмана

    С уменьшением температуры концентрации газа на высотах отличных от нуля, убывает, обращаясь в ноль при температуре T=0

    При абсолютном нуле все молекулы воздуха расположились бы на земной поверхности.

    При больших температурах наоборот концентрация слабо уменьшается с высотой.

    Распределение молекул газа получается в результате действия двух «конкурирующих» тенденций: 1. притяжение к земле, 2. тепловое движение

    На разной высоте молекула обладает разной потенциальной энергией => распределение молекул газа по высоте, является в тоже время распределением их по значениям потенциальной энергии.

    Таким образом получаем:

    Из этого => что молекулы располагаются с большей концентрацией (плотностью) тела, где их потенциальная энергия меньше, и наоборот, с меньшей плотностью в местах, где их потенциальная энергия больше.

    Среднее число столкновений и средняя длина свободного пробега молекул .

    Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с огромным числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул .

    Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 68). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

    Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости , и если - среднее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

    Для определения представим себе молекулу в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

    Среднее число столкновений за 1 с равно числу молекул в объеме «ломаного» цилиндра:

    где n - концентрация молекул, V = pd2 - средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений

    Расчеты показывают, что при учете движения других молекул

    При рассмотрении кинетической теории газов и закона распределения Максвелла предполагалось, что на молекулы газа не действуют никакие силы, за исключением ударов молекул. Поэтому, молекулы равномерно распределяются по всему сосуду. В действительности молекулы любого газа всегда находятся в поле тяготения Земли. Вследствие этого, каждая молекула массой m испытывает действие силы тяжести f =mg.

    Выделим горизонтальный элемент объема газа высотой dh и площадью основания S (рис. 11.2). Считаем газ однородным и температуру его постоянной. Число молекул в этом объеме равно произведению его объема dV=Sdh на число молекул в единице объема. Полный вес молекул в выделенном элементе равен

    Действие веса dF вызывает давление, равное

    (11.2)

    минус - т.к. при увеличении dh давление уменьшается. Согласно основному уравнению молекулярно-кинетической теории Приравнивая правые части (11.2) и (11.3), получаем

    Или
    Интегрируя это выражение в пределах от до h (соответственно концентрация изменяется от до n):

    Получим
    Потенцируя полученное выражение, находим

    Показатель степени при exp имеет множитель , который определяет приращение потенциальной энергии молекул газа. Если переместить молекулу с уровня до уровня h, то изменение ее потенциальной энергии будет Тогда уравнение для концентрации молекул преобразуется к виду

    Это уравнение отображает общий закон Больцмана и дает распределение числа частиц в зависимости от их потенциальной энергии. Он применим к любой системе частиц, находящихся в силовом поле, например в электрическом.

    28. Броуновское движение. Столкновение молекул в газе. Длина свободного пробега.
    Броуновское движение– это непрерывное хаотическое движение малых частиц, взвешенных в жидкости или газе (при этом подразумевается, что сила тяжести не влияет на их движение). В газе броуновское движение совершают, например, взвешенные в воздухе частицы пыли или дыма. Броуновское движение частицы возникает потому, что импульсы, с которыми молекулы жидкости или газа действуют на эту частицу, не компенсируют друг друга. Молекулы среды (то есть молекулы газа или жидкости) движутся хаотично, поэтому их удары приводят броуновскую частицу в беспорядочное движение: броуновская частица быстро меняет свою скорость по направлению и по величине. Броуновское движение – это тепловое движение, интенсивность которого возрастает с ростом температуры среды и продолжается неограниченно долго без каких-либо видимых изменений. Интенсивность броуновского движения также возрастает с уменьшением размера и массы частиц, а также при уменьшении вязкости среды. Броуновское движение служит наиболее наглядным экспериментальным подтверждением существования атомов (молекул) и их хаотического теплового движения. Длина свободного пробега молекулы - это среднее расстояние, которое частица пролетает за время свободного пробега от одного столкновения до следующего. Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега. Величина является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

    Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

    где p - давление газа в слое, расположенном на высоте h, p0 - давление на нулевом уровне (h = h0), M - молярная масса газа, R - газовая постоянная, T - абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону: где M - молярная масса газа, R - газовая постоянная. Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина, определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT. Чем выше температура T, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m. Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте. Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия.

    Явления переноса в термодинамически неравновесных системах. Опытные

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ: