Практическая психология

Развитие нанотехнологий и наноматериалов начинается с 1931 года, когда немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты. Позже в 1959 году американский физик Ричард Фейнман (нобелевский лауреат по физике, 1965) впервые опубликовал работу, в которой оценивались перспективы миниатюризации под названием «Там внизу — море места». Он заявил: «Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа … Но, в принципе, физик мог бы синтезировать любое вещество по заданной химической формуле». Тогда его слова казались фантастикой, поскольку не существовало технологий, которые позволили бы оперировать отдельными атомами на атомарном же уровне (имеется в виду возможность познать отдельный , взять его и поставить на место). Фейнман даже назначил награду $ 1000 тому, кто практически докажет его правоту.

История развития нанотехнологии

В 1974 году японский физик Норио Танигучи ввел термин «нанотехнология», предложив описывать им механизмы размером менее одного микрона.

Немецкими физиками Гердом Бинниг и Генрихом Рорером был создан сканирующий туннельный микроскоп (СТМ), который позволил манипулировать веществом на атомарном уровне (1981 г.), Позже они получили за эту разработку Нобелевскую премию. Сканирующий атомно-силовой (АСМ) микроскоп еще больше расширил типы исследуемых материалов (1986 г.).

В 1985 году Роберт Керл, Харольд Крото, Ричард Смолли открыли новый класс соединений — фуллерены (Нобелевская премия, 1996 год).

В 1988 году независимо друг от друга французский и немецкий ученые Альберт Ферт и Петер Грюнберг открыли эффект гигантского магнетосопротивления (ГМС) (в 2007г. присуждена Нобелевская премия по физике), после чего магнитные нанопленки и нанопровода стали использоваться для создания устройств магнитной записи. Открытие ГМС стало основой для развития спинтроники. С 1997 года компания IBM в промышленных масштабах начала изготавливать спинтронных приборы — головки для считывания магнитной на основе ГМС размерами 10-100 нм.

ГМС, или, иначе, гигантское магнетосопротивление (англ. giant magnetoresistance сокр., GMR) - представляет собой эффект изменения электрического сопротивления образца под действием магнитного поля (преимущественно в гетероструктурах и сверхрешетках), отличающееся от магнетосопротивления масштабом эффекта (возможно изменение сопротивления на десятки процентов, в отличие от магнетосопротивления, когда изменение сопротивления не превышает единиц процентов). Его открытие сделало возможным разработку современных носителей информации для компьютеров — накопителей на жестком магнитном диске (HDD)

1991 год ознаменовался открытием углеродных нанотрубок японским исследователем Сумио Ииджимою.

В 1998 году впервые создан транзистор на основе нанотрубок Сизом Деккером (голландский физик). А в 2004 году он соединил углеродную нанотрубку с ДНК, впервые получив полноценный наномеханизм, открыв тем самым путь к развитию бионанотехнологии.

2004 год — открытие графена, за исследования его свойств А. К. Гейму и К. С. Новоселову в 2010 г. присуждена Нобелевская премия по физике. Известные фирмы IBM, Samsung финансируют научные проекты с целью разработки новых электронных устройств, смогли бы заменить кремниевые технологии.

Общая характеристика нанотехнологий и наноматериалов

Нанотехнологии (НТ) (греческое слово «nannos» означает «карлик») — это совокупность методов манипулирования веществом на атомном или молекулярном уровне с целью получения заранее заданных свойств.

1 нанометр (нм) = 10 -9 метра.

К нанотехнологиям относят технологии, обеспечивающие возможность контролируемым образом создавать и модифицировать наноматериалы, а также осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Нанотехнологии используют: атомное сообщения молекул, локальную стимуляцию химических реакций на молекулярном уровне и др. Процессы нанотехнологий подлежат законам квантовой механики.

На сегодня основными отраслями нанотехнологий являются: наноматериалы, наноинструменты, наноэлектроника, микроэлектромеханические системы и нанобиотехнологии.

Задача НТ:

  • получения наноматериалов с заданной структурой и свойствами;
  • применения наноматериалов по определенному назначению с учетом их структуры и свойств;
  • контроль (исследования) структуры и свойств наноматериалов как в ходе их получения, так и в период их применения.

Существует два основных подхода к нанопроизводства: сверху вниз и снизу вверх . Технология сверху вниз заключается в измельчении материала, имеющего большие размеры (массивный материал), до наноразмерных частиц. При подходе снизу вверх продукты нанопроизводства создаются путем выращивания (создания) их из атомного и молекулярного масштабов.

Производство на наноуровне известно как нанопроизводств — предусматривает масштабные мероприятия, создание надежного и экономически эффективного производства наноразмерных материалов, конструкций, устройств и систем. Оно предусматривает исследования, разработки и интеграции технологий сверху вниз и более сложную — снизу вверх или процессы самоорганизации.

Наноматериалы — это дисперсные или массивные материалы (структурные — зерна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и имеющие качественно новые свойства, функциональные и эксплуатационные характеристики, которые проявляются вследствие наномасштабных размеров.

Все вещества в начальном состоянии или после определенного обработки (измельчения) имеют разную степень дисперсности, размер составляющих частиц можно не увидеть невооруженным глазом.

Объекты с размерами в пределах 1-100 нм принято считать нанообъектами , но такие ограничения являются весьма условными. При этом данные размеры могут касаться как всего образца (нанообъектом является весь образец), так и его структурных элементов (нанообъектом является его структура). Геометрические размеры некоторых веществ приведены в таблице.

Основные преимущества нанообъектов и наноматериалов состоит в том, что за малых размеров в них проявляются новые особые свойства, не характерные этим веществам в массивном состоянии.

Классификация вещества в зависимости от степени дисперсности

состояние вещества раздробленность вещества Степень дисперсности, см -1 Число атомов в частице, шт.
макроскопическое грубодисперсная 10 0 -10 2 > 10 18
Средство наблюдения: невооруженный глаз
микроскопическое тонкодисперсная 10 2 -10 5 > 10 9
Средство наблюдения: оптический микроскоп
коллоидное ультрадисперсных 10 5 -10 7 10 9 -10 2
Средство наблюдения: оптический ультрамикроскоп, электронный и сканирующий зондовый микроскоп
Молекулярное, атомное и ионное Молекулярная, атомная и ионная > 10 7 <10 2
Средство наблюдения: микроскоп с высоким разрешением (<0,1 нм) и сканирующий микроскоп

Свойства наноматериалов определяются их структурой, для которой характерно обилие границ раздела (границы зерен и тройных стыков — линии соприкосновения трех зерен). Изучение структуры является одной из важнейших задач наноструктурного материаловедения. Основной элемент структуры — зерно или кристалит.

Классификация по размеру . По размерной признаком нанообъекты разделяют на три типа: нульмерные/ квазинульмерные (0D), одномерные (1D), двумерные (2D).

Нанообъекты нульмерные/ квазинульмерные (0D) — это наночастицы (кластеры, коллоиды, нанокристаллы и фуллерены), содержащие от нескольких десятков до нескольких тысяч атомов, сгруппированных в связи или ансамбли в форме клетки. В этом случае частица имеет нанометровые размеры во всех трех направлениях.

Наночастицы — это нанообъекты, у которого все характерные линейные размеры имеют один порядок величины (до 100 нм). Как правило, наночастицы имеют сферическую форму и, если они имеют ярко выраженное упорядоченное размещение атомов (или ионов), то их называют нанокристаллитами. Наночастицы с выраженной дискретностью энергетических уровней часто называют «квантовыми точками» или «искусственными атомами».

Сравнение геометрических размеров материалов

Нанообъекты одномерные (1D) — углеродные нанотрубки и нановолокна, наностержни, нанопровода, то есть цилиндрические объекты с одним измерением в несколько микрон и двумя нанометровыми. В данном случае один характерный размер объекта, по крайней мере на порядок превышает два других.

Нанообъекты двумерные (2D) — покрытие или пленки толщиной несколько нанометров на поверхности массивного материала (подложке). В этом случае только одно измерение — толщина должна нанометровые размеры, два других являются макроскопическими.

Особые свойства наноматериалов

В макромасштабе химические и физические свойства материалов не зависят от размера, но при переходе к наномасштабу все меняется, включая цвет материала, точку плавления и химические свойства. В нанокристаллических материалах существенно изменяются механические свойства. При определенных условиях эти материалы могут быть сверхтвердыми или сверхпластичными. Твердость нанокристаллического никеля при переходе к наноразмерных размеров увеличивается в несколько раз, а прочность на растяжение возрастает в 5 раз. плавления кластеров (более 1000 атомов) золота становится такой же как и для объемного золота. Добавление наноструктурированного алюминия в ракетное топливо радикально меняет его скорость сгорания. Теплопроводность моторного масла существенно возрастает при добавлении многослойных углеродных нанотрубок.

Так, в нанокристаллических и нанопористых материалах резко увеличивается удельная поверхность, то есть доля атомов, находящихся в тонком (~ 1 нм) приповерхностном слое. Это приводит к повышению реакционной способности нанокристаллов, поскольку атомы, находящиеся на поверхности, имеют ненасыщенные связи в отличие от тех, что находятся в объеме и связанных с соседними атомами.

Экспериментальные данные, полученные в разных лабораториях для нанопорошков, свидетельствуют, что в большинстве случаев чувствительность к возгоранию от электрической искры, сталкивания или механического трения и интенсивность горения возрастают при уменьшении размера частиц в пылевом облаке (и соответственно при увеличении удельной поверхности).

Если металлические частицы имеют размеры порядка мкм — нм, то их минимальная воспламенения (МЭЗ) значительно уменьшается и составляет менее 1 мДж (это нижняя граница чувствительности аппарата, который обычно используется для измерения МЭЗ). Была изучена зависимость размеров частиц Al, полиэтилена и оптического отбеливателя от МЭЗ. Результаты по огнеопасности Al приведены в таблице. Согласно полученным данным, максимальное давление взрыва P max возрастает при переходе в нанодиапазон, минимальная концентрация воспламенения (МКЗ) существенно не меняется, а МЭЗ резко уменьшается как минимум, в 60 раз.

Огнеопасность частиц Al
Размер частиц P max , бар MКЗ, г / 3 МЭЗ, мДж
  1. 40 мкм
  2. 100 нм
  3. 35 нм

Размерная зависимость поверхностной энергии нанокристаллов приводит соответствующую зависимость температуры плавления, которая для нанокристаллов становится меньше, чем для макрокристаллов. В целом в нанокристаллах наблюдается заметное изменение тепловых свойств, что связано с изменением характера тепловых колебаний атомов. В ферромагнитных наночастицах при уменьшении размера ниже некоторого критического значения для системы становится энергетически невыгодным состояние разбиение на домены. В результате наночастицы превращаются из полидоменных в однодоменных, при этом получая особые магнитные свойства.

Области науки, связанные с нанотехнологиями

Междисциплинарность — это характеристика отрасли знаний или научной проблемы, где успешный результат может быть достигнут только при объединении усилий отдельных наук. Интеграция знаний отдельных научных отраслей приводит к синергизму — получение качественно новых знаний, которые, благодаря своим уникальным свойствам, получили применение во многих областях знаний.

Спинтроника — направление отрасль современной электроники, основанная на использовании спиновых эффектов и квантовых свойств спина электронов, характеризуются двумя квантовыми состояниями (спин вверх и спин вниз). Изменение ориентации спинов происходит за счет воздействия высокой плотности тока, проходящего через сверхтонкие ферромагнитные структуры (сэндвичи). Ориентация спинов остается неизменной, если источник поляризованного тока выключается, поэтому спинтронные устройства очень широко используются как головки считывания, устройства памяти на явлении ГМО и туннельном МО, генераторы переменного напряжения, контролируемые по току, транзисторы на эффекте поля и тому подобное.

Нанобиология — отрасль биологии, посвященная изучению структурных, биологических, биофизических процессов в природных биологических структурах или их нанобиологичных аналогах, законов, которым подчинены биологические системы. Создание на этой основе действующих наномоделей биологических структур сегодня составляют основу нанобиологии. Достижения науки нанобиологии составляет основу развития таких направлений нанонауки, как биоорганическая нанохимия, нанофармацевтика, наносенсорика, наномедицина и тому подобное.

Молекулярная электроника исследует электронные наносистемы, содержащие, как составные части, единичные молекулы или молекулярные комплексы, а также технологии изготовления таких наносистем, основанные на использовании процессов самосборки, включая процессы манипулирования как одиночными молекулами, так и молекулярными комплексами.

Наносенсорика отрасль науки о сенсорных наносистемах, действие которых основано на селективном восприятии сигналов различной природы: биологических, химических, температурных и т. п., и их преобразовании в электрические (бионаносенсоры, которые могут не только отслеживать состояние организма, но и автоматически выполнять некоторые необходимые действия).

Нанооптика — область науки, посвященная оптическим наносистемам, выполняющих функции информационного управления, осуществляя обработку, хранение и передачу информации в виде оптических сигналов. Перспективным разделом нанооптика является нанофотоника, ее элементную базу составляют фотонные кристаллы, эффективно используются в устройствах обработки, хранения и передачи информации.

Наномеханика (наноробототехника) — область техники, занимающейся созданием нанороботов, способных выполнять определенные медицинские операции в теле пациента (нанокатетеры, которые позволяют эффективно осуществлять диагностику и терапию в кровеносных сосудах и кишечном тракте, а также дозировочные и распределительные наноустройства, которые обеспечивают доставку лекарств, нужных пациентам). Кроме того, малые размеры микрокомпонентов делают их идеальными для манипулирования биологическими образцами на микроскопическом уровне.

Области применения нанотехнологии

НТ приобретают все большее значение и могут использоваться во всех промышленных отраслях, в частности в электронике, солнечной промышленности, энергетике, строительстве, авто-, авиастроении, медицине и др.

Электроника. Развитие технологического процесса при изготовлении транзисторов в компьютерной технике (микро-процессоры) постепенно уменьшается с 90 до 14 нм, что не является пределом (планируется к 2019 году его уменьшить до 10-8 нм). Таким образом, на одном сантиметре кремния будет размещаться миллиард транзисторов.

Благодаря развитию материаловедения и микроэлектроники происходит уменьшение элементарной ячейки запоминающих устройств. На сегодня перспективными становятся материалы на основе сверхрешеток, диамагнетиков, ферромагнетиков, в которых реализуется эффект гигантского магнитного сопротивления, перпендикулярного составления и анизотропии.

Среди полупроводниковых технологий отметим лазеры, работающие при низкой температуре, имеют малый порог генерации (до 15 мкА), которые получат широкое использование, например, в квантовой криптографии.

Сочетание полученных новейших результатов из сферы материаловедения и электроники позволяет создавать устройства с уникальными гибкими, влаго- и ударопрочными свойствами, имеют высокий коэффициент полезного действия и длительный срок службы. Применение новых материалов позволяет создавать высокоэффективное фотоприемное оборудования для видимого и инфракрасного излучения, использование которого повысит эффективность мониторинга линий электропередач, трубопроводов, охранных систем.

Энергетика. Вопросы энергообеспечения всегда актуальны, они предусматривают две основные задачи — создание приборов с экономным потреблением электроэнергии и изготовление зарядных устройств на основе новых технологий с улучшенными показателями. Осветительная техника модернизируется, лампы накаливания заменяются на яркие светодиоды и матрицы на их основе.

Значительное внимание уделяется альтернативным видам энергии. Так, разработаны солнечные элементы, поглощающие энергию в инфракрасной части спектра. Это происходит благодаря технологии, которая использует специальный производственный процесс нанесения металлических наноантенн (крошечных квадратных спиралек) на пластмассовую подложку. Такая конструкция позволяет получать до 80% энергии солнечного света, тогда как существующие солнечные батареи могут использовать лишь 20%. излучает много тепловой энергии, часть из которой поглощается землей и другими объектами и излучается в течение многих часов после захода солнца; наноантенны «улавливают» это тепловое излучение с более высокой эффективностью, чем обычные солнечные батареи.

Создание аккумуляторов на основе нановолокон кремния, содержащих ионы лития вместо углерода, приведет к увеличению емкости зарядных устройств и расширения диапазона использования. Ионная проводимость нанокомпозитов твердого электролита увеличивается на несколько порядков, за счет чего на его основе можно изготавливать миниатюрные гибкие батареи.

Медицина. Наноструктуризация приводит к уменьшению размера таблетки и повышение содержания лечебного вещества в крови. Это очень важно, потому что, наночастицы в будущем будут одним из средств доставки лекарств в пораженный участок (нанороботы). Наночастицы серебра благодаря своим бактерицидным свойствам используются при лечении различных ран с целью обеззараживания. Типичный размер наночастиц серебра 5-50 нм, их добавляют к моющим средствам, зубным пастам, влажным салфеткам, наносят на поверхности кондиционеров, покрывают столовые приборы, дверные ручки (в местах, где велика опасность распространения инфекций) и даже клавиатуры и «мышки» для компьютеров. Наночастицы золота вместе с антителами могут снизить вредный эффект от облучения при лечении опухолей.

Современное оборудование позволяет «увидеть жизнь» живых клеток, выполнять манипуляции с молекулами и дает возможность выращивать или клонировать части органов. Сочетание биологических и медицинских знаний вместе с достижениями электроники позволяют, используя нанотехнологии и наноматериалы, создавать микроэлектронные устройства (чипы) для контроля здоровья человека или животного.

Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узкопроизводственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый век, век пара и электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI век будет веком нанонауки и нанотехнологий, которые и определят его лицо.

Нанонауку можно определить как совокупность знаний об особенностях поведения вещества в нанометровом масштабе размеров, а нанотехнологии - как искусство создавать и оперировать объектами с размерами в диапазоне от долей до сотен нанометров (хотя бы в одном или двух из трех измерений).

Основные компоненты нанотехнологии представлены на рис. 2.1. Ее принципиальным фундаментом является физика, химия и молекулярная биология искусственных и естественных объемов, состоящих из счетного числа атомов, т.е. таких объектов, в которых уже в значительной степени проявляйся сильная зависимость всех свойств от их размеров (размерные эффекты), дискретная атомно-молекулярная струк- тура вещества и/или квантовые закономерности его поведения.

Другой важнейшей составной частью нанотехнологии является умение целенаправленно создавать или находить в природе наноструктурированные материалы и объекты с наперед заданными свойствами. Следующая составляющая нанотехнологии

Создание готовых продуктов, многокомпонентных изделий с новыми потребительскими качествами и назначением (сверхъемкая память, сверхскоростные процессоры, интеллектуальные нанороботы и др.). Наконец, средства контроля, аттестации и исследования наноизделий и наноструктурированных материалов на всех стадиях изготовления и использования - также необходимая компонента нанотехнологии.

Уже сейчас в области нанонауки и нанотехнологии реализуются десятки крупных программ во всех развитых странах мира. Нанотехнологии используются в таких значимых для общества сферах как здравоохранение и медицина, биотехнологии и охрана окружающей среды, оборона и космонавтика, электроника и вычислительная техника, химическое и нефтехимическое производство, энергетика и транспорт. Темпы роста инвестиций и внедрения нанотехнологии в индустриально развитых странах мира сейчас очень высоки, и в ближайшие 10 - 20 лет она будет определять уровень экономического развития и в значительной мере - социальный прогресс в обшестве.

Такая перспектива ставит новые задачи и всей системе образования, в первую очередь - профессионального. Поскольку нанотехнология подразумевает интеграцию фундаментальных знаний и высокотехнологичных способов производства наноструктурированных материалов и готовых изделий, в западных университетах наметилась тенденция сокращения объемов подготовки как «чистых» физиков, математиков, химиков, биологов, так и инженеров традиционных направлений: металлургов, механиков, энергетиков, технологов, и увеличения доли «синтетических» специальностей в области физического материаловедения и нанотехнологии.

За последние несколько лет в мировой периодике опубликовано около 10 тыс. статей по нанопроблематике и начало издаваться около десятка ежемесячных специализированных журналов по отдельным направлениям нанонауки.

Итак, что же сейчас понимают под нанотехнологиями? Сама десятичная приставка «нано» означает одну миллиардную часть чего-либо. Таким образом, чисто формально в сферу этой деятельности попадают объекты с характерными размерами R (хотя бы вдоль одной координаты), измеряемыми нанометрами (1 нм = 10-9 м=10Е).

Реально диапазон рассматриваемых объектов и явлений гораздо шире - от отдельных атомов (R < 0,1 нм) до их конгломератов и органических молекул, со- держащих более 109 атомов и имеющих размеры гораздо более 1 мкм в одном или двух измерениях (рис.2.2). В силу действия различных причин (как чисто геометрических, так и физических) вместе с уменьшением размеров падает и характерное время протекания разнообразных процессов в системе, т.е. возрастает ее потенциальное быстродействие, что очень важно для электроники и вычислительной техники. Реально уже сейчас достигнутое быстродействие - время, затрачиваемое на одну элементарную операцию в серийно производимых компьютерах, составляет около 1 нc (10-9 с), но может быть еще уменьшено на несколько порядков величины в ряде наноструктур.


Наивно было бы думать, что до наступления эры нанотехнологии человек не сталкивался и не использовал объекты и процессы на наноуровне. Так, биохимические реакции между макромолекулами, из которых состоит все живое, получение фотографических изображений, катализ в химическом производстве, бродильные процессы при изготовлении вина, сыра, хлеба и другие происходят на наноуровне. Однако «интуитивная нанотехнология», первоначально развившаяся стихийно, без должного понимания природы используемых объектов и процессов, не может быть надежной основой в будущем. Поэтому первостепенное значение имеют фундаментальные исследования, направленные на создание принципиально новых технологических процессов и продуктов. Возможно, нанотехнологии смогут заменить некоторую часть морально устаревших и неэффективных технологий, но все-таки, ее главное место - в новых областях, в которых традиционными методами в принципе невозможно достигнуть требуемых результатов.

Таким образом, в громадном и пока еще слабо освоенном зазоре между макроуровнем, где действуют хорошо разработанные континуальные теории сплошных сред и инженерные методы расчета и конструирования, и атомарным, подчиненным законам квантовой механики, находится обширный мезоиерархический уровень структуры материи (техоs - средний, промежуточный с греческого). На этом уровне протекают жизненно важные биохимические процессы между макромолекулами ДНК, РНК, белков, ферментов, субклеточных структур, требующие более глубокого понимания. Вместе с тем здесь могут быть искусственно созданы невиданные ранее продукты и технологии, способные радикально изменить жизнь всего человеческого сообщества. При этом не потребуется больших затрат сырья и энергии, как и средств для их транспортировки, уменьшится количество отходов и загрязнение окружающей среды, труд станет более интеллектуальным и здоровым.

Введение.

Ряд нанообъектов известен и применяется довольно давно. К ним относятся: коллоиды, мелкодисперсные порошки, тонкие плёнки.

1) Р. Фейнман – нобелевский лауреат. «Насколько я вижу, принципы физики не запрещают манипулировать отдельными атомами» 1959г.

2) 1996г. Р.Янг предложил идею пьезодвигателей, которые сейчас обеспечивают прецизионное перемещение инструментов нанотехнологий с точносьтю 0.01 Å. Å=

3) В 1974 г. Норио Танигути впервые употребил термин «нанотехнология»

4) В 1982-1985 гг. немецкий профессор Г. Гляйтер предложил концепцию наноструктуры твердого тела.

5) В 1985г. коллектив ученых Роберт Керл, Харолд Крото, Ричард Смолли открыл фуллерены и создал теорию УНТ, которые экспериментально были получены в 1991 г.

6) В 1982 г. Г. Бининг и Г. Рорер создали первый сканирующий туннельный микроскоп (СТМ).

7) В 1986 г. появился сканирующий атомно-силовой микроскоп.

8) В 1987-1988 г. Был пордемонстрирован принцип действия первой нанотехнологической установки, которая позволяла манипулировать отдельными атомами. (В СССР)

Э.Дрекслер – обощил все знания о нанотехнологиях, определил концепцию самовоспоризводящихся молекулярных роботов, которые должны были производить сборку и декомпозицию, запись информации в память на атомарном уровне, сохранение программ самовоспроизведение и реализацию их.

9) В 1990г. С помощью СТМ фирмой IBM были нарисованы 3 буквы. Они были нарисованы атомами Xe(35 атомов) на плоской грани кристалла никеля.

К настоящему времени уже отрабатываются технологические приёмы т.н. запряжения атомов на поверхностях и образование различных комбинаций атомов в объеме – при комнатной температуре.

Наиболее реальным выходом нанотехнологий является то, что называется самосборкой атомарных структур. Задача современной нанотехнологии – найти природные законы, которые обечпечивали бы сборку атомарных структур.

Понятие нанообъекта, наноматериала, нанотехнологии.

Нано – «». Таким образом в сферу деятельности нанотехнологий попадают объекты, которые имеют хотя бы в одном измерении размер, измеряемый в нм. Реально диапазон рассматриваемых объектов гораздо шире – от размера отдельного атома, до конгломераотв (органических молекул, которые содержат свыше 10 9 атомов имеющих размеры более 1 мкм в 1,2ух или 3ех измерениях. Принципиально важно, что эти объекты состоят не из б.б числа атомов, что обуславливает проявление дискретной атомно-молекулярной структуры вещества или квантовых закономерностей его поведения.

1) Определение нанообъекта. Любой физический объект с нангометровыми размерами в 1х,2х,3х координатах прострнства (скоро возможно и во времени).

2) Опредление нанообъекта. Нанообъектом называют любой амтериальный объект, у которого количество приповерхностных атомов сравнимо или превышает количесто атомов, находящихся в объеме.

3) Определение нанообъекта. Нанообъект – это объкет с размерами в 1 или более координатах, сравнимый с длиной волны де Бройля для электрон. (В 1924 г. физик де Бройль сказал, что корпускулярно-волновой дуализм для фотонов присущ любой частице в природе). , где h – постоянная Планка, p – импульс. Электрон – обладает самой большой волной де Бройля.

4) Опредление нанообъека. Называют объекты, которые в своем измерении меньше критического размера события. (размер соизмерений с поляризационным радиусом того или иного критического явления, длиной свободного пробега электронов, размер магнитного домена, размер зарождения твердой фазы).

5) Определение нанообъекта. Нанообъектом называют объект с размером менее 100 нм хотя бы в 1 из 3х пространственных измерений. 100нм – длина волны де Бройля для электрона в п/п.

Наноматериалами называют как сами нанообъекты (еси они служат для изготовления устройств и приборов различного технического назначения, как и материалы в которых нанообъекты используются для формирования у этих материалов определенных свойств или наноструктурированные материалы. С понятием «наноматериалы» тесно связано понятие «нанотехнологии».

Под термином «технология» понимают три поятия:

1) технологический процесс
2) комплект технологической документации

3) Научную дисциплину, изучающую закономерность сопровождающую процессы обработки и изделия.

Нанотехнология – это научная дисциплина изучающая закономерности в получении обработки и применения наноматериалов.

Физические причины специфики наночастиц и наноматериалов.

1) В нанообъектах количество приповерхностных или зернограничных атомов становится сравнимым с количеством атомов. Находящихся в объеме.

2) Атомы, располагающиеся на поверхности, также в узлах уступов и ступенях имеют малое число завершенных связей. В отличие от атомов, находящихся в объеме твердого тела. Это приводит к разному увеличению химической, каталитической активности нанообъектов и моноструктурированых материалов. Кроме того миграция с углеродных атомов происходит вдоль поверхности гораздо быстрее, т.е. увеличение скорости диффузионной миграции, рекристаллизации, а также сорбционная ёмкость и т.д.

3) Для нанообъектов силы изображения линейного и поверхностного натяжения проявляются гораздо сильнее, чем для нанообъектов, т.к. при удалении от поверхности в объеме твердого тела эти силы значительно ослабевают. Величина этих сил приводит к очистке объема нанообъекта сил дефектов кристаллической структуры. Нанообъект имеет более совершенную кристаллическую структуру, чем нанообъект.

Силы изображения получили свое название по методу расчета электрических полей.

4) В нанообъектах большое значеие приобртают размерные эффекты, обусловленные рассеянием, рекомбинацией и отражением на границах объектов (речь идет о движении микрочастиц).

В любом явлении переноса (эл.ток, теплопроводность, пластичесая, дефорамция и т.д.)

Носителям можно приписать некую эффективную длину свободного пробега, когда размер объекта>>длины свободного пробега носителя процесс рассеяния и гибели носителей слабо зависит от геометрии объекта. Если же размер объекта сравним с длиной свободного пробега носителя, то эти процессы протекают более интенсивней и они сильно зависят от геометрии образца.

5) Размер наночастиц сопоставим или меньше размера зародыша новой фазы, домена, дислокационная петля, и т.д. Это приводит к радикальному уменьшению магнитных свойств, (наночастица Fe не обладает магнитными свойствами), диэлектрических свойств, прочностных свойств нанообъектов и наноматериалов по сравнению с макрообъектами.

6) Для малого числа атомов вещества характерна реконструкция поверхности, самоорганизация и самосборка. т.е. при объединении атома в кластер происходит образование геометрических структур, которые в дальнейшем могут быть использованы для решения технических задач

Рисунок 1- Сила взаимодействия между атомами.

7) В нанообъектах проявляется квантовые закономерности поведения различных элементарных частиц (электронов). С позиции квантовой механики электрон может представлен волной, описывающей соответствующие волновые функции. Распространение этой волны в твердом теле контролируется эффектами, связанными с т.н. квантовым ограничением (интерференция волны, возможность туннелирования через потенциальные барьеры). Для металлических материалов ограничения, накладываемые волновой природой элементарных частиц пока неактуальны, т.к. для них (для электрон) волна де Бройля λe < 1мм, число составляет несколько атомарных размеров. А в п/п эффективная масса электрона и его скорость движения таковы, что длины волны де Бройля для электрона λe может составлять от 10 до 100 мм. Причем, размеры формируемых структур а п/п уже соизмеримы с данными величинами. Современные микропроцессоры (флэш память) || расстояние между контактами от 0.03мкм до 30мкм.

8) По мере понижения размерности нанообъекта степень дискретизации энергетического спектра электронов нарастает. Для квантовой точки (объекта, состоящего, буквально, из нескольких атомов) электроны приобретают спектр разрешенных энергий, практически, аналогичный отдельному атому.

КЛАССИФИКАЦИЯ НАНООБЪЕКТОВ.

Размерность нанообъекта – основа классификации нанообъектов.

В соответствии с размерностью различают:

1) 0-D нанообъекты – те, у которых все 3 пространственных размера лежат в нанометровом диапазоне (грубо: все 3 размера <100нм)

Такой объект в макроскопическом смысле является нульмерным и поэтому, с точки зрения электронных свойств, такие объекты называются квантовыми точками. В них волна де Бройля больше, чем любой пространственный размер. Квантовые точки используют в лазеростроении, оптоэлектронике, фотонике, сенсорике и др.

2) 1-D нанообъекты – те объекты, которые имеют нанометровые размеры в двух измерениях, а в третьем – макроскопический размер. К ним относят: нанопроволоки, нановолокна, одностенные и многостенные нанотрубки, органические макромолекулы, в т.ч. двойные спирали ДНК.

3) 2-D нанообъекты – те, которые имеют нанометровый размер только в одном измерении, а в двух остальных этот размер будет макроскопическим. К таким объектам относят: тонкие приповерхностные слои однородного материала: плёнки, покрытия, мембраны, многослойные гетероструктуры. Их квазидвумерность дает возможность изменить свойства электронного газа, характеристики электронных переходов (p-n переходов) и т.д. Именно 2-D нанообъекты позволяют придумать основу для разработки принципиально новой элементной базы радиоэлектроники. Это будет уже наноэлектроника, нанооптика и т.д.

В настоящее время 2-D нанообъекты чаще всего служат в качестве всевозможного рода покрытий антифразионных, антикоррозионных и т.д. Большое значение они имеют и для создания различного рода мембран в молекулярных фильтрах, сорбентах и т.д.

КЛАССИФИКАЦИЯ НАНОМАТЕРИАЛОВ.

Учитывая тот факт, что известные на настоящий момент наноматериалы пришли в современные нанотехнологии из различных областей науки и техники, приемлемой единой классификации, на какой-либо основе, просто не существует.

Наноматериалы:

Объемные наноструктурированные материалы

Нанокластеры, наночастицы, нанопорошки

Многослойные наноплёнки, многослойные наноструктуры, многослойные нанопокрытия.

Функциональные (умные) наноматериалы

Нанопористые

Фуллерены и их производные нанотрубки

Биологические и биосовместные материалы

Наноструктурированные жидкости: коллоиды, гели, взвеси, полимерные композиты

Нанокомпозиты.

НАНОЧАСТИЦЫ, НАНОПОРОШКИ

Первые наночастицы были созданы человеком непреднамеренно, случайно, в различных технологических процессах. В настоящее время их стали конструировать и производить специально, что и заложило основу нанотехнологиям. Развитие нанотехнологий привело к принципиальному пересмотру некоторых фундаментальных принципов:

Путь «сверху-вниз» – общая парадигма нанотехнологий (от заготовки отрезается лишнее)

Нанотехнологии предлагают путь «снизу-вверх» – от малого к большому (от атома к объекту). Это парадигма нанотехнологий.

В основном, в настоящее время, в нанотехнологиях доминируют технологические приемы, пришедшие к нам из макротехнологий. Для создания наночастиц, которые относятся к классу 0-D объектов. Современные нанотехнологии применяют способ диспергирования, т.е. измельчения. Для того чтобы измельчить (диспергировать) любой макроскопический объект до наноразмеров обычное диспергирование не подходит. Чем мельче размер частиц, тем выше активность их поверхности, в результате отдельные частицы объединяются в объемные конгломераты. Поэтому для ультратонкого диспергирования требуется применение определенного типа среды в виде поверхностно-активных веществ, которые снижают силы поверхностного натяжения, а также стабилизаторов. Мылоподобные композиции, которые препятствуют повторному слиянию. При определенных условиях. Когда на границе твердого тела поверхностная энергия сильно снижена процесс диспергации может происходить самопроизвольно, за счет. Например, теплового движения частиц. Этими методами можно получить порошки Ме с размерами частиц десятки нм. Оксидами этих металлов с размерами частиц в 1 нм. А также производить диспергацию полимеров, компонентов керамик и т.д.

Способы измельчения: шаровая мельница, вибромельница, аттрикторы, струйные мельницы.

1)

2) Помимо диспергации широко используется процесс, который является комбинированным от двухограниченных парадигм. Этот процесс заключается в испарении твердого вещества с последующей конденсацией в различных условиях. Например, конденсация пара вещества, нагретого до 5000-10000° С в среде охлажденного инертного газа с быстрым удалением образовавшегося порошка из зоны конденсации. Таким образом можно получить порошки с размерами частиц 3-5 нм.

1 – Источник испаряющегося вещества

2- Откачка

3 – Порошок

4 – Скребок

5 – Барабан конденсации


3) Третий способ также имеет отношение к традиционному диспергированию и называется распыление расплавленного вещества в потоке охлажденного газа или жидкости.

В качестве газовой среды струи, сбивающей капельку могут служить N 2 ,Ar 2 , а в качестве жидкости – спирты, вода, ацетон. Таким способом можно получить частицы с размерами около 100 нм.

Все описанные процессы очень производительны но как правило не обеспечивают ультрадисперсности порошка, стабильности размеров частиц и не обеспечивают чистоты процесса. Это не единственные известные способы формирования наночастиц. К 0-D Нанообъектам, помимо ультрадисперсных порошков, относят также фуллерены, углеродные 0-D нанообъекты.

Глава 1- D нанообъекты.

Каждый из названных нанообъектов находит свое применение в различных отраслях техники. Например, нанопроволоки предлагают использовать как проводники в субмикронных и наноэлектронных узлах. Нановолокна применяются как элемент наноструктурированных нанокомпозиционных п/п. Органические макромолекулы также находят применение в создании наноструктурированных материалов.

В медицине, в химической промышленности.

Для электроники очень существенное значение приобрели такие 1-D нанообъекты, как нанотрубки. По большому счету все нанотрубки подразделяя.тся на 2 больших класса:

1) Углеродные нанотрубки (УНТ).

2) Неуглеродные нанотрубки.

Кроме этого все нанотрубки различаются по количеству слоев: однослойные, двуслойные, многослойные.

НЕУГЛЕРОДНЫЕ НАНОТРУБКИ

Все не-УНТ делят на две системы:

1) Переходные наноструктуры, в состав которых входит углерод

2) Дихалькогенидные нанотрубки. В настоящее время из дихалькогенидных трубок известны MoS 2 ,WS 2 ,WSe 2 ,MoTe 2 и т.д. Такие нанотрубки представляют собой сверхтонкие, в идеале – моноатомные слои, материалы, свернутые в рулон.

Некоторые слоистые материалы, в силу асимметричности химических связей, достаточно свободно сворачиваются в такие рулоны самостоятельно, причем единственная проблема при формировании таких структур – это получить свободный, ни с чем не связанный слой вещества атомарной величины. Другие материалы не склонны к самопроизвольному сворачиванию и поэтому в настоящее время разрабатываются технологические приемы, позволяющие формировать нанотрубки принудительно. Существует 3 варианта таких процессов:

1) Гетероэпитаксиальное наращивание тонких слоев материала, из которого мы хотим сформировать нанотрубку, на основании уже имеющейся нанотрубки. Пример GaN→ZnO

Главный недостаток этого способа заключается в том, что трудно подобрать пару материалов для гетероэпитаксиального наращивания

2) Одностенные нанотрубки, полученные путем последовательного уменьшения электронным лучом исходного нанопровода. Пример: Золотые и платиновые нанотрубки. D Pt нанотрубки – 0,48 нм.

3) Основан на выращивании тонкой, напряженной гетероэпитаксиальной структуры, толщиной в несколько монослоев, на плоской подложке, с последующим освобождением этой гетероструктуры от связи с подложкой и сворачиванием в трубку, свиток. 1ML – один монослой.

Процесс сворачивания идет за счет действия межатомных сил в напряженной гетероплёнке.

На In методом гетероэпитаксии выращивается хорошо согласующийся с ним AlAs, затем на эту структуру, методом ГЭ, наращивается слой AsIn. Он имеет параметры кристаллической решетки большие, чем у AlAs и поэтому, когда этот слой наращивается он как бы сжимается. Затем на этот слой опять же методом ГЭ наращивается слой GaAs. Но, в отличие от AsIn, этот слой имеет меньший параметр кристаллической решетки (меньший размер элементарной ячейки) и его, наоборот, растягивает. В результате, когда мы начинаем вытравливать слой AsAl, то освободившаяся структура InAs c AsGa начинает сворачиваться в трубку за счет сил, которые InAs – расширяют, а слой GaAs – стягивают.

Достоинства метода:

1) Диаметр трубок широко варьируется и может быть легко задан набором соответствующих материалов для гетероструктуры.

2) Способ позволяет использовать практически любые материалы (п/п, Ме, диэлектирики) и все их сворачивать в нанотрубки.

3) Хорошее качество и относительно большая длина трубок с однородными по толщине стенками.

4) Метод хорошо стыкуется с технологией интегральных микросхем ИМС.

5) Физические свойства таких нанотрубок определяются материалами исходной гетероструктуры.

2- D НАНООБЪЕКТЫ (ТОНКИЕ ПЛЁНКИ)

Используются в технике. Как покрытия. Создание тонкоплёночных покрытий позволяет существенно изменить свойства исходного материала, не затрагивая объем и не увеличивая геометрические размеры. Толщина не более 1 мкм. Наиболее распространенные цели нанесения покрытия:

1) Повышение износостойкости, термо- и коррозионной устойчивости материалов различных деталей.

2) Создание планарных, однослойных. Многослойных и гетероструктур для элементов микро0, наноэлектроники, оптоэлектроники, сенсорики и т.д.

3) Изменение оптических характеристик поверхности (очки-хамелеоны)

4) для создания магнитных сред в элементах записи и хранения информации.

5) Создание оптических средства записи и хранения информации. CD, DVD диски.

6) Создание поглотителей, сепараторов газовых смесей, катализаторов, химически модифицированных мембран и т.д. Существуют два принципиально различающихся подхода к улучшению служебных характеристик поверхности(т.е. к созданию пленок на них):

1) Модификация приповерхностных слоев различного рода обработкой (химическая, термическая, механическая, радиационная или их комбинации).

2) нанесение дополнительных слоев чужеродных атомов.

Все способы нанесения покрытий можно объединить в две группы:

1) Физическое осаждение из паровой фазы. PVD

2) Химичекое осаждение из паровой фазы. CVD

В обоих случаях процесс осуществляют в вакуумной камере, в которой иногда создается небольшое давление технологического газа (относительно химически нейтральные газы – Ar, N 2, этилен)

В (PVD) физических методах осаждения из паровой фазы используют, в основном, два способа доставки нового материала к подложке.

1) Распыление за счет термического нагрева (нагрев может осуществляться самыми различными способами: резистивным, электронно-лучевым, индукционным, лазерным и т.д.

2) Распыление за счет кинетической энергии Ek ускоренных ионов нейтральных газов, например, ионы Ar. Положительный ион Ar бомбардирует катод, на катоде мишень распыляемого материала и т.о. происходит физическое распыление данного материала.

Разница – только в способах распыления материала

Физическими методами осаждения из паровой фазы наносятся самые различные покрытия, т.к. эти методы обладают широким диапазоном достоинств:

1) Большое разнообразие материалов. Которые могут быть нанесены таким образом (Ме. Сплавы, полимеры, некоторые химические соединения)

2) Возможность получения качественных покрытий в очень широком диапазоне температур подложки.

3) Высокая чистота этого процесса, что обеспечивает хорошее качество сцепления.

4) Отсутствие существенного изменения размеров деталей.

В методах химического осаждения из паровой фазы твердые продукты (плёнка) на подложке растут в результате химической реакции с участием атомов рабочей атмосферы камеры. В качестве источников энергии для протекания такой реакции используют плазму какого-либо электрического разряда, иногда лазерное излучение. Данный вид технологических процессов более разнообразен, чем предыдущий. Он используется не только для создания покрытий, но для изготовления нанопорошков, которые потом удаляются с поверхности подложки.

Таким способом можно получить химические соединения с углеродом – карбиды, с N – нитриды, оксиды и т.д.

Достоинствами химического осаждения из паровой фазы является:

1) гибкость и большое разнообразие, которое позволяет осаждать покрытя на подложках разной природы и формы (на волокнах, порошках и т.д.)

2) Относительная простота необходимого технологического оборудования. Легкая автоматизируемость.

3) Большой выбор химических реакций и веществ, пригодных к использованию

4) Регулируемость и контролируемость структуры покрытия, его толщины и размера зёрен.

5) зерна – элементы поликристаллической структуры, те кристаллы, составляющие поликристаллы.

Большую роль в производстве тонкоплёночных структур играют эпитаксиальные процессы. Эпитаксия – это технологический процесс ориентированного наращивания слоя материала на поверхность того же самого или другого материала, т.е. подложки, выполняющей функцию создания ориентирующего воздействия. Если материалы подложки и пленки совпадают, то процесс носит название автоэпитаксия, если материалы подложки и пленки – разные, то это гетероэпитаксия. Все эпитаксиальные процессы делятся на два класса:

1) Процессы со средой носителем (жидкофазные и газофазные эпитаксии).

2) Без среды носителя (вакуумные эпитаксии). Молекулярно-пучковая или молекулярно-лучевая эпитаксия.

Жидкофазная эпитаксия. Достоинства недостатки.

Эпитаксия из жидкой фазы в основном применяется для получения многослойных полупроводниковых соединений, таких как GaAs, CdSnP2; также является основным способом получения монокристаллического кремния. Процесс проводят в атмосфере азота и водорода (для восстановления оксидных плёнок на поверхности подложек и расплава) или в вакууме(предварительно восстановив оксидные плёнки). Расплав наносится на поверхность подложки, частично растворяя её и удаляя загрязнения и дефекты.

Газофазная эпитаксия. Достоинства недостатки.

Газофазная эпитаксия - получение эпитаксиальных слоев полупроводников путём осаждения из паро-газовой фазы. Наиболее часто применяется в технологии кремниевых, германиевых и арсенид-галлиевых полупроводниковых приборов и ИС. Процесс проводится при атмосферном или пониженном давлении в специальных реакторах вертикального или горизонтального типа. Реакция идёт на поверхности подложек (полупроводниковых пластин), нагретых до 750 - 1200 °C

Молекулярно-лучевая (пучковая) эпитаксия. Достоинства недостатки.

Молекулярно-пучковая эпитаксия (МПЭ) или молекулярно-лучевая эпитаксия (МЛЭ) - эпитаксиальный рост в условиях сверхвысокого вакуума. Позволяет выращивать гетероструктуры заданной толщины с моноатомно гладкими гетерограницами и с заданным профилем легирования. Для процесса эпитаксии необходимы специальные хорошо очищенные подложки с атомарно-гладкой поверхностью.

Ориентированное наращивание. Невооруженным глазом видно кристаллическое тело – плоская, твердая поверхность.

В микроскоп: атомные и химические связи

Любой атом, находящийся непосредственно на поверхности имеет оборванную, незавершенную химическую связь. И эта связь представляет собой минимум Ep.

Ориентирующее действие атомов подложки на расположение свободного атома, когда он осаждается на поверхность.

УГЛЕРОДНЫЕ НАНОМАТЕРИАЛЫ

Американский архитектор Фуллер ввел новый элемент конструкции в архитектуру.

В 1985г. Были обнаружены частицы углерода, соединенные в аналогичную конструкцию. Эти вещества были названы фуллеренами. Фуллерен C-60 (60 атомов С), фуллерен C-70 (70 атомов С), возможен фуллерен C-1000000.

Атомы углерода могут образовывать высокосимметричную молекулу С-60, состоящую из 60 атомов и располагающихся в сфере диаметром 1нм. При этом, в соответствии с теоремой Леонарда Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников.

Молекулы С-60, в свою очередь, могут образовать кристалл, который называется фуллерит, обладающий границентрированной кубической решеткой (ГЦК) и достаточно слабыми межмолекулярными связями. Учитывая, что фуллерены гораздо крупнее атомов, то решетка получается неплотноупакованной, т.е. имеет полости в объеме октаэдрические, а тетраэдрические в полости, в которых могут находиться посторонние атомы. Если заполнить октаэдрические полости ионами щелочных Ме (K,Rb,Cs), то при температурах ниже комнатной, фуллерен превращается в принципиально новый полимерный материал, что очень удобно для формирования из заготовки полимера в околоземном пространстве (например, пузырей). Если заполнить тетраэдрические полости уже другими ионами, то образуется новый сверхпроводящий материал с критической t=40÷20 K. Благодаря способности к адсорбции различных веществ, фуллериты служат основой для создания новых уникальных материалов. Пример, C 60 C 2 H 4 имеет мощные ферромагнитные свойства. В настоящее время известно и используется боле 10000 видов. Из углерода можно получать молекулы с гигантским числом атомов. Например, C 1000000 . Это, чаще всего, УНТ одностенные или многостенные (вытянутые нанотрубки). При этом, диаметр такой нанотрубки ≈1нм, а длина – единицы, десятки мм – максимальная длина. Концы такой трубочки закрыты с помощью 6 правильных пятиугольников. В настоящее время это самый прочный материал. Графен – правильный шестиугольник, имеет плоскую структуру, но может быть и волнистый в том случае, если лист графена создан не из чередования правильных шестиугольников, а из комбинации 5-7 угольников.

СИНТЕЗ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ.

Первые фуллерены были выделены из конденсированных паров графита, получаемых при лазерном испарении твердых графитовых образцов. В 1990г. Ряд ученых (Кретчер, Хофман) разработали метод получения фуллеренов в размере нескольких грамм. Метод заключался в сжигании графитовых стержней – электродов в электрической дуге в атмосфере He при низких давлениях. Подбор оптимальных параметров процесса позволил оптимизировать выход годных фуллеренов, который от первоначальной массы стержня - 3-5% от массы анода, что, отчасти, объясняет высокую стоимость фуллерена. Этим заинтересовались японцы. Фирме Mitsubishi удалось наладить промышленное производство годных фуллеренов методом сжигании углеводородов. Но такие фуллерены – не чистые, они содержат в своем составе O 2 . Поэтому единственный чистый способ получения – сжигание в атмосфере He.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и их очистки привело к существенному снижению цен на них (сначала 1 грам – 10000$, а сейчас - 10÷15$). Высокую стоимость фуллерена (как и других углеродных н/м) объясняет не только низкий % выхода, но и сложная система очистки. Стандартная схема очистки: при сжигании образуется что-то вроде сажи. Её смешивают с растворителем (толуолом),затем эту смесь фильтруют, после отгоняют на центрифуге, так, чтобы из оставшихся мелких включений выделить наиболее крупные. Затем выпаривают. Оставшийся темный осадок – мелкодисперсная смесь различных фуллеренов. Эту смесь следует разделить по индивидуальным составляющим. Это производят с помощью жидкой хроматографии, высокоразрешающей электронной микроскопии и с помощью сканирующей зондовой микроскопии.

Первоначально УНТ также получали методом электродугового или лазерного испарения графита с последующей конденсацией в среде инертного газа. Этот метод оказался далеко не лучшим. Поэтому на данный момент наиболее практичный метод – химическое осаждение из пара. Для этого берут углеродосодержащее соединение, например, ацетилен, его разлагают на поверхности очень сильно нагретого Ме катализатора. И на поверхности этого катализатора начинают расти УНТ плотным пучком. Данная реакция называется каталитическим пиролизом газообразных углеводородов. Чаще всего реализуется во вращающихся трубчатых печах. В качестве катализаторов при этом выступают Fe, Co, Ni, частицами которых насыщают кусочки цеолита. Цеолит – природный минерал. В отличие от электродугового, лазерного и других видов высокотемпературного синтеза, каталитический пиролиз позволяет изготовление углеродных наноструктур в промышленных, а не лабораторных масштабах, и хотя они менее чистые и менее однородные по составу, они могут быть использованы. Графен – частица графита. Чешуйки графена помещают на подложку окисленного Si, что и позволяет исследовать графен, как самостоятельные материал, т.е. для электрофизических измерений. Пример, химический способ получения графена: кристаллический графит подвергают воздействию HCl и H2SO4, что приводит к окислению на краях, в этих листиках графена. Карбоксильную группу графена превращают в хлориды, путем обработки тионилхлорида. Затем, под действием октадециламина, в растворах тетрагидрофуранов, тетрахлорметана и дихлорэтана происходит превращение в графеновые слои толщиной 0,54 нм.

Способ получения графена на подложках карбида кремния, при этом графен образуется путем термического разложения карбида кремния на поверхности подложки. Исследования показали, что слой графита, который выделяется в этом случае, имеет толщину большую, чем один атомарный слой, но т.к. на границе раздела между карбидом кремния SiC образуется некомпенсированный заряд, из-за разности работ выхода электронов, то в проводимости участвует только один атомарный слой графита, то есть этот слой, по сути, является графеном.

ИСПОЛЬЗОВАНИЕ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

1) Для модификации оптических сред используются фуллерены.

2) Для изготовления принципиально новых композиционных материалов, причем, как с примесями нанотрубок, так и с фуллеренами

3) Для сверхтвердых покрытий. Поверхности инструментов, трущихся деталей ит.д. Достигают свойства алмаза по твердости.

4) Для смазочных составов и присадок.

5) Для контейнеров, т.н. водородного топлива, которые в дальнейшем будут использоваться как химические источники энергии

6) Для изготовления наносенсоров, регистрирующих физические и химические виды воздействия. Чувствительность – 1 молекула чужеродного вещества.

7) Зондов, для сканирующей микроскопии.

8) Для изготовления атомных манипуляторов

9) Для изготовления наномеханических накопителей информации.

10) Для изготовления нанопроводников, нанорезисторов, нанотранзисторов, нанооптических элементов.

11) Для изготовления защитных экранов от э/м излучения и высоких температур. Технология «стелс».

12) Можно изготавливать наноконтейнеры для лекарств.

13) Для изготовления крупногабаритных плоскопараллельных дисплеев высокой четкости и яркости.

ПРИНЦИП РАБОТЫ СКАНИРУЮЩЕГО ТУННЕЛЬНОГО МИКРОСКОПА (СТМ)

Если сблизить два отдельных атома на достаточное расстояние, то между этими атомами возможен обмен электронами без дополнительного приобретения этими электронами энергии. Следовательно, если взять два тела, сблизить на достаточное расстояние, то между этими телами потечет туннельный электрический ток, т.к. процесс перехода электронов через потенциальный барьер без приобретения энергии называется туннелированием. Для реальзации этого необходимо выполнение двух условий:

1) У одного из тел должны быть свободные электроны, а у другого незаполненные электронные уровни, на которые эти электроны могли бы перейти.

2) Между телами требуется приложить разность потенциалов, причем её величина меньше, чем при пробое воздушного зазора.

В СТМ одно из таких тел – это зонд.

При сближении зонда и поверхности объекта на расстояние, примерно, 0.5 нм (когда волновые функции ближайших друг к другу атомов начинают перекрываться) и при приложении разности потенциалов≈0,1÷1 В между зондом и объектом начинает течь т.н. туннельный ток.

Диаметр пучка этого туннельного тока ≈0,4 нм, что обеспечивает высокую разрешающую способность микроскопа по плоскости объекта. Туннельный ток составит 3 нА. Важно отметить, что при изменении расстояния L на 0,1 нм, туннельный ток меняется в 10 раз. Именно это обеспечивает высокую разрешающую способность микроскопа на высоте объекта. Фактически, в процессе проведения измерения, зонд, перемещаясь над поверхностью объекта сохраняет постоянную высоту.


Фиксация положения зонда, его координат в системе XYZ позволяет отследить профиль поверхности и преобразовать затем в соответствующую картину на экране монитора.

Т.к. расстояние между зондом и исследуемой поверхностью в процессе измерения составляет не более 0.3÷1 нм, то можно утверждать, что процесс измерения, фактически, изменяется в вакууме. В воздухе – 20 нм. Фактически, окружающая среда оказывает влияние за счет адсорбированных на поверхности молекул.

ТЕХНИЧЕСКИЕ ВОЗМОЖНОСТИ СКАНИРУЮЩЕГО ТУННЕЛЬНОГО МИКРОСКОПА (СТМ)

Основными техническими характеристиками являются:

1) Разрешение по нормали к исследуемой поверхности объекта

2) Разрешение в плоскости XY, т.е. в плоскости поверхности объекта

Высокое разрешение СТМ по нормали к поверхности объекта порядка 0.01 нм. Определяется крутой экспоненциальной зависимостью туннельного тока от расстояния между объектом и зондом. В плоскости XY высокое разрешение обеспечивается диаметром пучка электронов туннельного тока, который, в свою очередь, зависит от степени заточки иглы зонда. При многократном прохождении зонда с шагом≈0.02 нм разрешение в плоскости XY может достигать 0.03 нм. Реальное разрешение СТМ зависит от множества факторов, главными из которых являются: внешние вибрации, акустические шумы, качество зондов. Помимо разрешения микроскопа, важнейшей характеристикой является т.н. полезное увеличение ,

где dГ=200 мкм (разрешение глаза), dМ - максимальное разрешение микроскопа. dМ =0.03 нм (для СТМ). Т.о. раз. Для сравнения: у лучших оптических микроскопов раз

Другие важные характеристики СТМ:

Максимальный размер поля сканирования 1x1 мкм.

Максимальное перемещение зонда по OZ (в процессе измерения) почти не превышает 1 мкм.

В принципе современные микроскопы могут обеспечивать поле сканирования до нескольких сотен , но при этом ухудшается точность. Помимо измерения профиля поверхности и создания её визуальной модели, СТМ позволяет судить о типе электропроводности материала (для п/п), установить параметры валентной зоны ВЗ, зоны проводимости ЗП, энергетические характеристики примесей (т.е. определить положение примесных уровней). Определить химический тип связи между атомами поверхности объекта; определить химический состав поверхности объекта или поверхностного слоя – т.н. СТМ спектроскопия.

АТОМНО-СИЛОВОЙ МИКОРСКОП (СКАНИРУЮЩИЙ СИЛОВОЙ МИКРОСКОП) АСМ.

Отличие от СТМ заключается в том, что зонды (кантилеверы) взаимодействуют с исследуемой поверхностью не электрическим путем, а силовым.

Зависимость силы двух атомов от расстояния. Сила отталкивания возрастает в . Совместить два атома в одной точке пространства принципиально невозможно.

Игла кантилевера касается поверхности объекта и отталкивается этой поверхностью, когда приближается на расстояние межатомарного взаимодействия. Колебания зонда кантилевера преобразуются в электрические сигналы различными способами (самый простейший – оптический способ). Оптический способ:

Этот сигнал имеет в себе информацию о высоте. На которую опустился кантилевер на конкретном шаге измерения. Информация о перемещении в плоскости XY фиксируется от механизмов перемещения этой исследуемой плоскости.

Помимо оптических методов преобразования могут быть использованы емкостные или туннельные сенсоры, т.к. между исследуемым объектом и зондом (в режим е АСМ микроскопии), то АСМ может исследовать не только проводящие объекты, но и диэлектрические. Требования к объекту – он должен быть гладкий (чтобы не было больших перепадов высот) и твердый (газообразный и жидкий объекты нет смысла исследовать).

Разрешающая способность АСМ напрямую зависит от качества заточки зонда.

Основные технические сложности данного вида микроскопии:

1) Сложность изготовления зонда, заостренного до размеров одного атома.

2) Обеспечение механической. В том числе. Тепловой и вибрационной стабильности на уровне лучше 0.1 Å.

3) Создание детектора. Способного регистрировать столь малые перемещения.

4) Создание системы развертки с шагом в доли Å.

5) Обеспечение плавного сближения иглы зонда с поверхностью.

В сравнении с растровым электронным микроскопом РЭМ, АСМ обладает рядом преимуществ:

1) АСМ позволяет получить истинно трехмерный рельеф поверхности, у РЭМ 2D изображение

2) Непроводящая поверхность, рассматриваемая с помощью АСМ не требует нанесения металлического слоя.

3) Для нормальной работы РЭМ требуется вакуум, для АСМ вакуум не требуется.

4) АСМ потенциально может дать более высокое разрешение, чем РЭМ
Недостатками АСМ можно считать:

1) Небольшой размер поля сканирования (по сравнению с РЭМ).

2) Жесткие требования к размеру вертикальных перепадов высот сканируемой поверхности. В РЭМ напильник увидим, в АСМ – нет.

3) Жесткие требования к геометрии зонда. Который очень легко повредить.

4) Практическая неустранимость искажений. Которые вносит тепловое движение атомов исследуемой поверхности. Этот недостаток можно было бы искоренить в том случае, если бы скорость сканирования превышала скорость теплового движения молекул, т.е. в каждый момент времени картина уже другая.

Все эти проблемы так или иначе компенсируются за счет программной обработки результатов измерения, однако, следует помнить, что то, что мы видим на экране компьютера – не реальная поверхность, а модель, и степень достоверности модели – под вопросом.

В настоящее время сканирующие зондовые микроскопы СТМ и АСМ нашли широкое применение во всех областях науки (в физике, химии, биологии, в материаловедении).

Нанотехнологические зондовые машины.

Первоначально, когда была установлена принципиальная возможность перемещения отдельных атомов зондом СТМ, у ученых возникла некоторая эйфория – они уже мечтали о сборке всяких объектов не только наномира, но и макромира. Тем не менее на основе достижений СТМ микроскопии были созданы устройства, которые называются нанотехнологические зондовые машины. Если между объектом и зондом приложить большую разность потенциалов, чем при измерении параметров поверхности объекта, то за счет энергии можно возбуждать любой атом поверхности (оторвать от поверхности). Этот возбужденный атом. Как правило, прилипает к зонду, и, соответственно, может быть этим зондом перенесен на новое место, а при снижении энергии, подаваемой на зонд (при снижении разности потенциалов), снова опущен на поверхность. Но в те времена не была решена проблема закрепления (принудительного) чужеродных атомов на поверхности объекта в условиях, отличных от абсолютного нуля или близких к абсолютному нулю.

Благодаря проведенным исследованиям нам теперь известны энергии возбуждения атомов различных материалов и решён вопрос подачи атомарного газа в зону работы зонда СТМ. По сути именно наличие устройства подачи атомарного газа в рабочую зону отличает зондовую нанотехнологическую машину от СТМ.

В настоящее время уже разработаны принципы управления многозондовыми машинами, что позволяет увеличить их производительность, а следовательно повысить вероятность более широкого применения такой зондовой поатомной сборки и, в конечном счете, с делать рентабельной сборку по направлению «снизу-вверх».

В КАКИХ НАПРАВЛЕНИЯХ РАЗВИВАЮТСЯ НАНОТЕХНОЛОГИИ.

1) Реализуется направление «снизу-вверх», т.е. поатомная сборка.

2) Создание макроскопическими и физикохимическими методами новых наноматериалов.

ДОСТИЖЕНИЯ НАНОТЕХНОЛОГИЙ.

1) Нанометровый контроль поверхности востребован в производстве таких вещей, как контактные линзы, создание наноэлектронных приборов.

2) сканирующая зондовая микроскопия по точности не имеет себе равных в настоящее время. С её помощью можно находить и перемещать отдельные атомы и создавать группы атомов. Однако такие конструкции не подходят для массового использования.

Самым перспективным материалом, с точки зрения нанотехнологий, является углерод С, обладающий уникальным химическими свойствами:

1) Позволяет создавать молекулы с неограниченным числом атомов.

2) Он обладает изоморфностью кристаллической решетки, т.е. различными типами кристаллической решетки.

В настоящее время в нанотехнологии вкладываются огромные деньги.

Термин «наноэлектроника» логически связан с термином «микроэлектроника» и отражает переход современной полупроводниковой электроники от элементов с характерным размером в микронной и субмикронной области к элементам с размером в нанометровой области. Этот процесс развития технологии отражает эмпирический закон Мура, который гласит, что количество транзисторов на кристалле удваивается каждые полтора-два года.

К наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зерна, кристаллиты, блоки, кластеры и другие), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми функциональными и эксплуатационными характеристиками. К нанотехнологиям можно отнести технологии, обеспечивающие возможность контролируемым образом создавать и модифицировать наноматериалы, а также осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Среди основных составляющих науки о наноматериалах и нанотехнологиях можно выделить следующие:

    фундаментальные исследования свойств материалов на наномасштабном уровне;

    развитие нанотехнологий для целенаправленного создания наноматериалов, а также поиска и использования природных объектов с наноструктурными элементами, создание готовых изделий с использованием наноматериалов и интеграция наноматериалов и нанотехнологий в различные отрасли промышленности и науки;

    развитие средств и методов исследования структуры и свойств наноматериалов, а также методов контроля и аттестации изделий и полуфабрикатов для нанотехнологий.

XXI век ознаменовался революционным началом развития нанотехнологий и наноматериалов. Они уже используются во всех развитых странах мира в наиболее значимых областях человеческой деятельности (промышленности, обороне, информационной сфере, радиоэлектронике, энергетике, транспорте, биотехнологии, медицине). Анализ роста инвестиций, количества публикаций по данной тематике и темпов внедрения фундаментальных и поисковых разработок позволяет сделать вывод о том, что в ближайшие 20 лет использование нанотехнологий и наноматериалов будет являться одним из определяющих факторов научного, экономического и оборонного развития государств. В настоящее время интерес к новому классу материалов в области как фундаментальной и прикладной науки, так промышленности и бизнеса постоянно увеличивается. Это обусловлено следующими причинами:

    стремлением к миниатюризации изделий,

    уникальными свойствами материалов в наноструктурном состоянии,

    необходимостью разработки и внедрения материалов с качественно и количественно новыми свойствами,

    развитием новых технологических приемов и методов, базирующихся на принципах самосборки и самоорганизации,

    практическим внедрением современных приборов исследования, диагностики и модификации наноматериалов (сканирующая зондовая микроскопия),

    развитием и внедрением новых технологий, представляющих собой последовательность процессов литографии, технологий получения нанопорошков.

Направление наноструктурных исследований уже почти полностью сместилось от получения и изучения нанокристаллических веществ и материалов в область нанотехнологии, т. е. создания изделий, устройств и систем с наноразмерными элементами. Основные области применения наноразмерных элементов - это электроника, медицина, химическая фармацевтика и биология.

Лекция №19

Нанотехнология в последние годы стала одной из наиболее важных и захватыва­ющих областей знаний на переднем крае физики, химии, биологии, технических наук. Она подает большие надежды на скорые прорывы и новые направления в технологическом развитии во многих сферах деятельности. Для облегчения и ускорения широкомасштабного использования этого нового подхода важно иметь общие представления и некоторые конкретные знания, которые с одной стороны были бы достаточно подробными и глубокими для обстоятельного охва­та темы, и в то же время достаточно доступными и законченными, чтобы быть по­лезными широкому кругу специалистов, желающих больше узнать о существе вопро­са и перспективах в этой области.

Текущий широкий интерес к нанотехнологии восходит к 1996 - 1998 годам, когда правительственная комиссия при содействии Центра Оценки Мировых Технологий (World Тесhno1оgу Еvaluation Сепtег) (WТЕС), финансируемая Нацио­нальным Фондом Науки США и другими федеральными агентствами, предпри­няла изучение мирового опыта исследований и разработок в области нанотехно­логии с целью оценки их технологического инновационного потенциала. Нано­технология базируется на понимании того, что частицы размером менее 100 нанометров (нанометр это одна миллиардная доля метра) придают сделанным из них материалам новые свойства и поведение. Это происходит вследствие того, что объекты с размерами менее характерной длины (которая обусловлена природой конкретного явления) часто демонстрируют другую физику и химию, что приво­дит к так называемым размерным эффектам - новому поведению, зависящему от размера частиц. Так, например, наблюдались изменения электронной структуры, проводимости, реакционной способности, температуры плавления и механичес­ких характеристик при размерах частиц менее критических. Зависимость поведе­ния от размеров частиц позволяет конструировать материалы с новыми свойства­ми из тех же исходных атомов.

По заключению WTЕС эта технология имеет громадный потенциал для ис­пользования в чрезвычайно большом и разнообразном множестве практических областей - от производства более прочных и легких конструкционных материалов до уменьшения времени доставки наноструктурированных лекарств в кровенос­ную систему, увеличения емкости магнитных носителей и создания триггеров для быстрых компьютеров. Рекомендации, данные этим и последующими комитета­ми, привели к ассигнованию очень больших средств на развитие нанонауки и на­нотехнологии в последние годы. Междисциплинарные исследования охватили широкий круг тем - от химии катализа наночастицами до физики лазеров на квантовых точках. В результате для того, чтобы оценить наиболее общие перспек­тивы и последствия развития нанотехнологии и сделать свой вклад на этом новом захватывающем поле деятельности было осознано, что исследователям необходимо периодически выходить за пределы их узкопрофессиональной области зна­ний. Технические менеджеры, эксперты и те, кто принимают финансовые реше­ния, должны разбираться в очень широком круге дисциплин.


Нанотехнология стала рассматриваться не только как одна из наиболее многообещающих ветвей высокой технологии, но и как системообразующий фактор экономики 21-го века – экономики, основанной на знаниях, а не использовании природных ресурсов или их переработки. Помимо того, что нанотехнология стимулирует развитие новой парадигмы всей производственной деятельности («снизу-вверх» - от отдельных атомов – к изделию, а не «сврху-вниз», как в радиционной технологии, в которых изделие получают путём отсечения излишнего материала от более массивной заготовки), она сама является источником новых подходов к повышению уровня жизни и решению многих социальных проблем в постиндустриальном обществе. ПО мнению большинства экспертов в области научно-технической политики и инвестирования средств, начавшаяся нанотехнологическая революция охватит все жизненно важные сферы деятельности человека (от освоения космоса – до медицины, от национальной безопасности – до экологии и сельского хозяйства), а её последствия будут обширнее и глубже, чем компъютерные революции последней трети 20-го века. Всё это стаит задачи и вопросы не только в научно-технической сфере, но и перед администраторами различного уровня, потенциальными инвесторами, сферой образования, органами гос. управления и т.д.

В последние годы появляются достаточное количество публикаций, посвящённых вопросам теории, свойствам и практическому применению наноматериалов и нанотехнологии. В частности, широко представлена эта тема в книге авторов Ч. Пула и мл.Ф. Оуэнса « Нанотехнологии», пер. с англ., 2-е,дополненное издание, изд. «Техносфера», М.,2006г.,335с. Авторы отмечают,что хотя эта книга пер­воначально планировалась как введение в нанотехнологию, из-за самой природы этой науки она превратилась во введение в отдельные области нанотехнологии, которые, по-видимому, являются ее типичными представителями. Из-за высо­кой скорости развития и междисциплинарной природы невозможно дать дейст­вительно всеобъемлющее изложение предмета. Представленные темы отбира­лись исходя из достигнутой глубины понимания вопроса, объема их потенциаль­ных или уже существующих применений в технике. Во многих главах обсуждаются нынешние и будущие возможности. Для тех, кто желает узнать больше о конкретных областях, в которых развивается эта технология, даны ссылки на литературу.

Авторы попытались дать введение в предмет нанотехнологии, написанный на та­ком уровне, чтобы исследователи в разных областях смогли оценить развитие об­ласти вне пределов их профессиональных интересов, а технические руководите­ли и менеджеры - получить обзор предмета. Возможно, эту книгу можно исполь­зовать как основу для университетского курса по нанотехнологии. Многие главы содержат введения в физические и химические принципы, лежащие в основе об­суждаемых областей. Таким образом, многие главы самодостаточны и могут изу­чаться независимо друг от друга. Так, глава 2 начинается с краткого обзора свойств объемных материалов, необходимого для понимания того, как и почему меняются свойства материалов при приближении размеров их структурных еди­ниц к нанометру. Важным стимулом к столь быстрому развитию нанотехнологии явилось создание новых инструментов (таких как сканирующий туннельный ми­кроскоп), которые позволили увидеть особенности нанометровых размеров на поверхности материалов. Поэтому в главе 3 описаны важнейшие инструменталь­ные системы и даны иллюстрации измерений в наноматериалах. Остальные гла­вы рассматривают другие аспекты проблемы. В книге охвачен весьма широкий круг проблем и тем: эффекты, связанные с размерами и размерностью объектов нанонауки и технологии, магнитные, электрические и оптические свойства наноструктурированных материалов, методы их получе­ния и исследования, самосборка и катализ в наноструктурах, нанобиотехнология, интегрированные наноэлектромеханические устройства, фуллериты, нанотрубки и многое другое. Описан ряд современных методов исследования и аттес­тации наноструктур и нанообъектов: электронная и ионно-полевая микроскопия, оптическая, рентгеновская и магнитная спектроскопия.

Вместе с тем очевидны и пробелы в структуре и содержании отдельных разде­лов. Так, почти полностью отсутствуют сведения о наноэлектронике, спинтронике, новых идеях в отношении квантовых вычислений и компьютеров. О боль­шинстве из них нет даже упоминания. Совершенно недостаточно уделено внима­ние чрезвычайно мощным и распространенным зондовым сканирующим методам исследования, аттестации, литографии и атомно-молекулярного дизай­на. Крошечный параграф, посвященный этим вопросам, совершенно не пропор­ционален роли и месту зондовой нанотехнологии. Весьма скромное место отве­дено слабой сверхпроводимости и очень перспективным устройствам на ее осно­ве. Скупо представлены пленки и гетероструктуры, играющие важную роль в современной планарной электронике, сверхтвердые и износостойкие покрытия и др. Как следствие, отсутствуют материалы, освещающие способы аттестации этих структур, в частности, характеризацию механических свойств тонких слоев и нанообъемов методами локального силового нанотестинга (наноиндентирова-ние, наноскрабирование и т.п.).

Отметим также, что нигде не приводится систематизация объектов и процес­сов нанотехнологии, вследствие чего неискушенному читателю остается неяс­ным, с какой же частью предмета ему удастся познакомиться, прочитав эту книгу.

Несмотря на отмеченные выше недочёты, в целом, книгу можно признать полезной для широкого круга читателей, включая студентов физических, химических и материаловедческих специальнос­тей. Последнее тем более актуально, что учебная литература по нанотехнологии на русском языке практически полностью отсутствует, а потребность в ней - ве­лика в связи с начавшейся с 2003 года подготовкой специалистов по наноматериалам и наноэлектронике в 12 российских ВУЗах.

Не со всеми представлениями и интерпретациями авторов можно согласить­ся безоговорочно. Однако, чтобы не загромождать текст большим количеством комментариев, дополнений и критических замечаний, при переводе и редакти­ровании устранены лишь очевидные ошибки, несоответствия и опечатки.

За время написания книги и ее переиздания на русском языке вышло много полезных книг, часть из которых перечислена ниже. По ним заинтересованный читатель может ознакомиться с отдельными разделами и панорамой нанотехно­логии в целом более глубоко.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: