Практическая психология

Вернемся к записанному выше условию термодинамического равновесия (2.4). Это условие означает, что всякая равновесная квантовая система поглощает энергию внешнего поля. В самом деле, согласно (2.2), внизу частиц всегда больше, чем вверху (см. рис. 2.1). Излучаемая в единицу времени энергия равна:

I изл = n 2 W 21 hn » n 2 W ИНД hn

Поглощаемая в единицу времени энергия равна:

I погл = n 1 W 12 hn

dr / dt = (n 2 – n 1) W инд hn (2.10)

Отсюда видно, что в равновесном состоянии всегда dr / dt < 0 в силу n 2 < n 1 . Для того, чтобы dr / dt > 0, необходимо, чтобы n 2 > n 1 . Это возможно только при нарушении термодинамического равновесия. Выражаясь языком квантовой электроники, необходима инверсная населенность рабочих уровней . Для этого нужно, чтобы переходы с испусканием излучения преобладали над переходами с поглощением.

Таким образом, мы подошли ко второму принципу, лежащему в основе работы лазера: для усиления электромагнитного излучения в квантовой системе необходимо создать инверсию населенностей пары квантовых уровней.

Формально подстановка такого соотношения населенностей в формулу Больцмана (2.2) ведет к отрицательному значению температуры Т . Поэтому системы с инверсной населенностью иногда называли системами с отрицательной температурой. Такое название следует признать неудачным по следующим причинам.

Нельзя забывать о том, что квантование энергии имеет место в связанных состояниях, где набор разрешенных значений энергии обязательно ограничен сверху. Поэтому, в силу целого ряда запрещающих факторов, квантовой системе невозможно сообщить произвольную энергию так, чтобы она, во-первых, осталась в равновесии, а во-вторых, продолжала существовать в связанном состоянии. Она либо перестанет существовать, либо потеряет равновесие. Деструкция системы нас, разумеется, не устраивает - то, что мы хотим от нее получить, никоим образом не есть увеличение беспорядка. А вот нарушение термодинамического равновесия, т.е. резонансная подкачка энергии на верхний уровень при возможно меньшем возмущении системы в целом - это именно то, что нужно. Так что отождествление инверсной населенности с отрицательной температурой - условность, поскольку само создание инверсии означает нарушение термодинамического равновесия, а понятие температуры как таковой с необходимостью предполагает наличие термодинамического равновесия.

Рассмотрим возможность усиления электромагнитного излучения при прохождении через среду с инверсной населенностью. Обозначим Dn л = 1/2pt 0 , где t 0 - время жизни верхнего уровня. Величина Dn л характеризует полосу частот, в пределах которой двухуровневая система эффективно взаимодействует с внешним полем. Ввиду конечности времени жизни верхнего уровня приходится учитывать частотную зависимость вероятности индуцированного перехода в (2.8) даже при монохроматическом внешнем поле. Именно:

Здесь q(n) - функция, описывающая частотную зависимость вероятности индуцированного перехода. В случае учета только конечности времени жизни верхнего уровня q(n) имеет лоренцеву форму (подробнее об этом ниже). Для монохроматического внешнего поля:

r n = r d (n -n 0),

где d - дельта-функция Дирака; n 0 = (Е 2 - Е 1) / h - частота внешнего поля, совпадающая с центральной частотой перехода Е 2 ® Е 1 .

q(n 0)B 21 r = 2/pDn л (2.12)

Учет ширины линии верхнего уровня необходим для того, чтобы связать W ИНД, входящую в dr / dt , с самой величиной r . Используя (2.10)-(2.12), можно непосредственно описать усиление внешнего поля за счет индуцированного излучения. Введем величину:

называемую показателем усиления . Здесь I - плотность мощности, или интенсивность излучения, пропорциональная квадрату амплитуды поля или числу фотонов. Видно, что α совпадает с точностью до знака с поглощением излучения при распространении вдоль координаты z . Поскольку речь идет о распространении электромагнитной волны, I ~ r и dz = cdt . Тогда:

(2.14)

Используя (2.10) и (2.12), получим:

(2.15)

В силу свойств индуцированного излучения получаемое при усилении в инверсной среде излучение когерентно. Среда с инверсной населенностью называется в квантовойэлектронике активной средой . Формула (2.15) дает показатель усиления активной среды в линейном приближении, т.е. в случае, когда α не зависит от интенсивности излучения r (или I ). Фактически это реализуется при достаточно малых интенсивностях, или в том случае, когда излучение не вызывает заметных отклонений распределения числа частиц по уровням от исходного.

Возможность усиления электромагнитного излучения в среде с инверсией населенности была показана В.А. Фабрикантом в 1940 г. , но не была должным образом оценена. Практически эта возможность была реализована при создании квантовых генераторов микроволнового диапазона советскими учеными А.М. Прохоровым и Н.Г. Басовым и группой американских ученых во главе с Ч. Таунсом в 1955 г., за что трое поименованных были удостоены Нобелевской премии. Созданный ими прибор получил название мазер M icrowave A mplification by S timulated E mission of R adiation».


В дальнейшем были реализованы условия для усиления и генерации в среде с инверсной населенностью излучения оптического диапазона. Соответствующий источник излучения получил название лазер ― аббревиатура английского термина «L ight A mplification by S timulated E mission of R adiation». Следует признать неудачность и этого термина, в котором не отражена особенность лазера как источника электромагнитного излучения с уникальными свойствами, то есть как генератора . В аббревиатуре слово «генератор» отсутствует. Стремление подчеркнуть достоинства лазера как автоколебательной системы привело к появлению в СССР в 60-е годы термина «оптический квантовый генератор» (ОКГ), в настоящее время вышедшего из употребления. Тогда же сформировались две точки зрения на работу лазера, условно называемые радиофизической и оптической .


С оптической же точки зрения лазером с одинаковым успехом можно называть любое устройство, в котором на выходе преобладает индуцированное излучение , независимо от того, реализован при этом автоколебательный режим или нет.


Длительное время (вплоть до 90-х годов минувшего века) преобладала радиофизическая точка зрения, наиболее последовательно изложенная впервые в классической работе У. Лэмба-младшего в 1964 г. «Теория оптических мазеров» . В последнее время в связи с технологическим прогрессом, небывало расширившим сферу практического применения «подпороговых» источников когерентного излучения в виде сверхизлучающих светодиодов, оптическая точка зрения получила «второе дыхание», хотя ни одной концептуальной работы, «уравнивающей в правах» оптическую точку зрения с радиофизической, в литературе не появилось.

Процесс создания инверсной населенности называется в квантовой электронике накачкой .

Для представления о результатах исторических исследований , ставших основой создания первого источника когерентного излучения, рассмотрим устройство мазера (первого квантового генератора, где в качестве активных центров использовались молекулы аммиака NH 3).

Молекула аммиака имеет форму пирамиды с треугольным основанием. В вершине пирамиды расположен атом азота, а в углах основания ― атомы водорода (см. рисунок 2.3а). При этом атом азота в молекуле может занимать два равноправных положения выше и ниже основания пирамиды. Это ведет к тому, что у молекулы появляются два энергетических состояния, разность энергий между которыми соответствует частоте ν =23 870 МГц. В электрическом поле из-за явления Штарка разница между энергиями уровней Е 2 -Е 1 увеличивается по мере роста напряженности поля Е (рисунок 2.3б). Таким образом, с ростом напряженности электрического поля энергия верхнего состояния Е 2 растет, а нижнего Е 1 уменьшается. Рассмотрим квадрупольный конденсатор, образованный четырьмя параллельными стержнями (рисунок 2.3в). При указанной на рисунке полярности заряда конденсаторе напряжен



ность на оси конденсатора равна нулю.

Рисунок 2.3. К устройству мазера на пучке молекул аммиака.

Поскольку в соответствии с законами механики любая система испытывает силу, направленную в сторону уменьшения ее потенциальной энергии, при помещении молекул аммиака в квадрупольный конденсатор молекулы, находящиеся в верхнем энергетическом состоянии, будут стремиться к оси конденсатора, тогда как молекулы, находящиеся в нижнем состоянии будут уходить от оси. Таким образом, если вдоль оси квадрупольного конденсатора пустить струю газа, то возбужденные молекулы будут «фокусироваться» вдоль оси конденсатора, и на выходе из него получится струя газа (пучок молекул) с инверсной населенностью между состояниями, разделенными энергией , которая может быть (и с успехом была) использована для усиления резонансного электромагнитного излучения. В данном случае (ν = 23 870 МГц) частота этого излучения располагается в микроволновом диапазоне.

Возможно создание инверсной населенности за счет возбуждения активных центров интенсивным излучением оптического диапазона. Такая накачка используется в системах с высокой концентрацией активных центров ― в активированных кристаллах, стеклах и растворах. Однако при этом необходимо соблюдение дополнительных условий.

В случае двухуровневой системы (см. рисунок 2.2) внешнее резонансное излучение может привести всего лишь к выравниванию населенностей уровней. Действительно, до облучения населенность нижнего уровня n 1 больше населенности верхнего уровня n 2 , поэтому число вынужденных переходов на верхний уровень n 1 W 12 будет превышать число вынужденных переходов в обратном направлении n 2 W 21 . В начальный момент резонансное излучение максимально поглощается. В последующие моменты времени виду преобладания переходов снизу вверх разность населенностей n 1 ─n 2 будет стремиться к нулю, и вещество перестает поглощать резонансное излучение (просветляется). Иначе говоря, происходит насыщение поглощения на рабочем переходе.

Таким образом, с помощью оптической накачки невозможно создать инверсную населенность в двухуровневой системе. Но это оказывается возможным в более сложных квантовых системах, имеющих число уровней больше двух (см. рисунок 2.4).



Рисунок 2.4. Трехуровневые (а, б) и четырехуровневая (в) схемы возбуждения

активной среды

Рассмотрим систему активных центров, имеющих три энергетических уровня (рисунок 2.4а), характеризующуюся тем, что уровень с энергией Е 3 за счет релаксационных переходов имеет малое время жизни относительно перехода на уровень Е 2 , который, в свою очередь, характеризуется большим временем жизни и называется за это «метастабильным». В равновесном состоянии большинство активных центров оказывается на уровне 1, который называют основным уровнем, иначе говоря, в основном состоянии.

Пусть на такую систему подается излучение с частотой . Тогда за счет вынужденных переходов активные центры будут переходить в состояние с энергией Е 3 , а за счет релаксационных переходов «сваливаться» с уровня Е 3 на метастабильный уровень с энергией Е 2 . Если частота релаксационных переходов 3®2 будет превышать частоту релаксационных переходов 2®1, то активные центры будут накапливаться на метастабильном уровне 2, и его населенность n 2 может превысить населенность нижнего уровня n 1 . То есть будет создана инверсная населенность, которая может быть использована для усиления за счет вынужденных переходов излучения, резонансного переходу 2®1.Заметим, что только для выравнивания населенностей на этих уровнях необходимо перебросить наверх как минимум половину активных центров. Затраченная на это энергия не может быть использована для усиления резонансного излучения. Однако, поскольку для переброски на уровень 3 требуется большая энергия накачки (речь идет о большом числе активных центров и, соответственно, о больших световых потоках излучения накачки), возникшая инверсия может обеспечить большую энергию, высвечиваемую на рабочем переходе. Такой режим работы с радиофизических позиций называется «жестким» режимом возбуждения (трудно выполнить условия генерации, но в случае их выполнения автоколебания возникают с большой интенсивностью).

Возможна другая ситуация (рисунок 2.4б), когда короткоживущим оказывается уровень 2. В этом случае активные центры, заброшенные возбуждающим излучением на уровень 3, могут создать на нем инверсную населенность относительно уровня 2. Действительно, центры, оказавшиеся на уровне 2 за счет вынужденных переходов 3®2, будут «скатываться» за счет быстрой релаксации на уровень 1 (в основное состояние), откуда излучением накачки будут вновь переведены на уровень 3. В отличие от предыдущего случая, инверсия создается на переходе 3→2, и для выполнения условия самовозбуждения не требуется переброски более половины активных центров в состояние 3 из основного состояния. Такой режим называется «мягким» режимом возбуждения, поскольку инверсию создать относительно легко, но получить большую выходную мощность на рабочем переходе трудно.

И, наконец, наиболее эффективной оказывается четырехуровневая схема (рисунок 2.4в). В ней сильны (т.е. имеют малое время релаксации) релаксационные переходы 4®3 и 2®1, причем желательно, чтобы уровень 2 был расположен достаточно высоко над основным состоянием 1, так что его исходная населенность мала в соответствии с формулой Больцмана. В этом случае даже незначительное количество активных центров, заброшенных накачкой на уровень 4 и свалившихся на метастабильный уровень 3 за счет релаксации, могут создать инверсную населенность относительно уровня 2. В свою очередь, уровень 2 быстро опустошается, поскольку оказавшиеся на нем активные центры сбрасываются релаксацией в основное состояние. Поскольку в принципе уровень 2 (нижний рабочий уровень) может быть сколь угодно мало заселен, инверсия на рабочем переходе 3→2 получается значительно проще, чем в любой из трехуровневых схем. Недостатком четырехуровневой схемы можно считать относительно малую квантовую эффективность (отношение энергии рабочего перехода к энергии накачки hν 14 , ), поскольку рабочие уровни 2,3 расположены далеко от основного состояния.

Описанный способ накачки (оптический) целесообразно применять в случае конденсированных активных сред , когда плотность активных центров велика. Если же плотность активных центров мала (а это имеет место в случае газовой активной среды), то более эффективны другие способы накачки.

Наиболее распространенный способ накачки такой активной среды ― электрический разряд в разреженных газах. Если в запаянной трубке, заполненной разреженным газом, расположить два электрода и подать на них напряжение достаточной величины, то в пространстве между электродами может возникнуть стационарный тлеющий разряд. Электроны, вылетающие с катода, будут разгоняться электрическим полем и при соударении с частицами газа (атомами, молекулами) отдавать им энергию. При этом часть атомов будут ионизироваться, порождая вторичные электроны, а часть, получив энергию от электронов за счет неупругого соударения, возбудятся, то есть перейдут в более высокое энергетическое состояние.

Таким образом, в тлеющем разряде присутствуют три сорта частиц: ионы, электроны и нейтральные атомы (молекулы). В стационарном состоянии концентрацию каждой из этих компонент разряда можно считать постоянной, хотя при изменении условий их соотношение может меняться (имеет место динамическое равновесие). Очевидно при этом, что наличие различных коллективных компонент означает отсутствие термодинамического равновесия, поскольку для каждой их них существует свое квазиравновесное распределение по энергиям, характеризуемое своей «парциальной температурой». Если различием температур ионов и нейтральных частиц можно пренебречь (их массы различаются незначительно), то температура электронов будет существенно превышать температуру тяжелых частиц. Тем самым необходимое условие создания инверсии населенностей на какой-то паре возбужденных уровней ― отсутствие термодинамического равновесия ― в тлеющем разряде заведомо выполнено.

Дальше процессы могут проходить аналогично описанной выше оптической накачке, только роль возбуждающего фактора будет играть не поглощение излучения накачки, а столкновения частиц в разряде с преобладанием роли электронов. Именно так происходит накачка в большинстве газовых лазеров (на нейтральных атомах инертных газов , наиболее типичным представителем которых является гелий-неоновый; ионных , где наиболее примечателен лазер на ионах аргона; молекулярных , где наибольшее распространение получил СО 2 -лазер). Как видно из наименования, для каждого из перечисленных газовых лазеров в качестве рабочих используются переходы соответствующих активных центров. Ниже о каждом из этих типов лазеров будет рассказано подробнее, в связи с преобладанием их медицинских применений.

Если на стенки разрядной трубки нанести проводящие электроды и подать на них высокочастотный сигнал, то возникающий при этом тлеющий разряд в активной среде с высокой эффективностью воспринимает мощность от образованной электродами полосковой линии . Использование высокочастотного разряда для накачки газовой активной среды позволяет повысить КПД, уменьшить габариты блока питания и избавиться от высоких напряжений, представляющих опасность для обслуживающего персонала.

В газах инверсная населенность может быть получена не только за счет возбуждения электрического разряда, но и за счет нагрева активной смеси (в том числе и за счет процессов в камере сгорания) и быстрого ее охлаждения при истечении через сверхзвуковое сопло. Такой способ накачки лежит в основе действия газодинамических лазеров .

В последнее время наиболее быстро расширяется сфера применения полупроводниковых лазеров , работающих на межзонных переходах полупроводниковых кристаллов. Наиболее эффективным способом накачки в таких лазерах является инжекция, т.е. пропускание электрического тока через p-n переход. Ввиду исключительной перспективности применения полупроводниковых лазеров в медицине им в дальнейшем будет уделено особенно пристальное внимание.

На первый взгляд инверсию населенности можно создать в среде с двумя энергетическими уровнями Е 1 и Е 2 >Е 1. Например, это можно попытаться сделать путём облучения среды фотонами с частотой . Т.к. в нормальных условиях N 2 Е 2 , чем Е 2 => Е 1 .

Однако, когда населенности окажутся равными N 2 =N 1, процессы вынужденного излучения и поглощения будут компенсировать друг друга и инверсию создать будет невозможно.

Поэтому для лазеров применяют среды, в которых частицы могут занимать не два, а три или четыре уровня

С случае трехуровневой системы (рис.) уровень Е 2 должен быть метастабильными, т.е. время жизни частицы на этом уровне намного превышает время жизни на других уровнях возбуждённого состояния. Это означает, что W 21 <N 1 , которая используется для генерации лазерного излучения за счёт перехода Е 2 => Е 1 . Причём переход Е 3 => Е 2 происходит без излучения с передачей энергии кристаллической решетке в виде тепла. Пример такой среды – рубин с примесью ионов хрома.

В случае четырехуровневой системы метастабильным является уровень Е 2 , при этом W 21 <N 1 , которая используется для генерации лазерного излучения - за счёт перехода с Е 2 на Е 1 . Затем происходит быстрый переход с Е 1 на Е 0 без излучения. В четырехуровневой системе создать инверсию населенностей проще, т.к. уровень Е 1 первоначально заселен очень мало и уже при незначительном переводе частиц на уровень Е 2 создается инверсия населенностей. Пример – стекло с неодимом, а также газовая активная среда, применяемая в газовых СО 2 - лазерах. Создание инверсии населенностей в активной среде называется процессом накачки (или просто накачкой ).

Рассмотрим двухуровневую систему с плотностью атомов на нижнем n 1 и верхнем n 2 по энергии уровнях.

Вероятность вынужденного перехода с первого уровня на второй равна:

где σ 12 – вероятность перехода под действием интенсивности излучения J .

Тогда число индуцированных переходов в единицу времени составит величину

.

Со второго уровня система может перейти двумя способами: вынужденно и спонтанно. Спонтанные переходы необходимы для того, чтобы система могла прийти в состояние термодинамического равновесия после окончания действия внешнего возбуждения. Можно рассматривать спонтанные переходы как переходы, вызываемые тепловым излучением среды. Число спонтанных переходов в единицу времени равно , где А 2 – вероятность спонтанного перехода. Число вынужденных переходов со второго уровня равно

.

Отношение эффективного сечения поглощения и излучения равно

где g 1 , g 2 кратности вырождения уровней.

Балансовое уравнение определяется суммой населенностей уровней, которая должны равняться полному числу n 0 частиц в системе n 1 + n 2 =n 0 .

Изменение населенностей со временем описывается следующими уравнениями.

Решение этих уравнений следующее.

.

Решение этих уравнений в стационарном случае, когда производные населенностей по времени равны нулю: будут:

Инверсная населенность двух уровневой системы будет при условии , или

.

Отсюда следует, что только когда кратность вырождения верхнего уровня больше чем кратность вырождения основного уровня с учетом потерь населенности за счет спонтанных переходов возможно состояние с инверсной населенностью. Для атомных систем это маловероятно. Однако возможно для полупроводников, поскольку кратность вырождение состояний зоны проводимости и валентной зоны определяется плотностью состояний.

Инверсная населенность трехуровневых систем

Если рассматривать систему трех уровней с энергиями Е 1 , Е 2 , Е 3 , причем Е 1 >Е 2 3 и населенностями n 1 , n 2 , n 3 , то уравнения для населенностей будут.

Решение этих уравнений относительно инверсной населенности без учета разности кратности вырождения уровней в стационарном случае будет:

В стационарном случае

.

Условие наличия инверсной населенности Δ>0 выполняется, если

.

Система трех уровней в полупроводниках можно рассматривать как систему, где нижний уровень – валентная зона, а два верхних уровня – два состояния зоны проводимости. Обычно внутри зоны проводимости вероятности безизлучательных переходов намного больше вероятности переходов зона – зона, поэтомуА 32 » А 31 , поэтому условие инверсной населенности будет:

Поскольку

,

где ρ 13 усредненная в полосе поглощения активного материала плотность энергии накачки это условие может быть выполнено.

Электропроводность в сильных электрических полях

Нелинейный закон Ома

В сильных электрических полях увеличивается сила, действующая на частицу, что приводит к увеличению скорости частицы. Пока скорость частицы меньше скорости теплового движения влияние электрического поля на электропроводность незначительно и выполняется линейный закон Ома. При увеличении напряженности электрического поля увеличивается дрейфовая скорость частицы, и зависимость электропроводности от напряженности электрического поля переходит в на линейную область.

Поскольку длина свободного пробега при рассеянии на колебаниях кристаллической решетки не зависит от энергии, то при увеличении напряженности электрического поля и дрейфовой скорости время релаксации уменьшится и уменьшится подвижность. Сила, действующая на частицу в электрическом поле напряженности Е равна еЕ . Эта сила вызывает ускорение и изменяет тепловую скорость частицы v T . Под действием электрического поля частица ускоряется и за единицу времени приобретает энергию, равную работе сил еЕ :

(7.1) .

С другой стороны, энергия теряемая частицей за одно столкновение или за время свободного пробега составляет небольшую долю (ξ) от полной энергии Т и в единицу времени . Поэтому можно записать: .

Приравнивая это выражение с формулой (7.1), можно получить уравнение для напряженности электрического поля и скорости частицы:

(7.2) , или . .

Для рассеяния на колебаниях длина свободного пробега постоянна, то зависит скорости от напряженности электрического поля будет:

(7.3) .

Откуда подвижность будет зависеть от напряженности электрического поля следующим образом:

С увеличением напряженности электрического поля подвижность уменьшается.

Нелинейный закон Ома в сильных полях будет иметь следующий вид: .

Эффект Зиннера

Эффект Зиннера проявляется в автоэлектронной эмиссии электронов за счет туннельного перехода зона – зона. При переходе электрона из одного узла кристаллической решетки в другой необходимо преодолеть потенциальный барьер, отделяющий два узла. Этот потенциальный барьер определяет ширину запрещенной зоны. Приложение электрического поля понижает потенциальный барьер в направлении противоположном направлению внешнего электрического поля и увеличивает вероятность туннельного перехода электрона из связанного с ядром состояния в зону проводимости. По своему характеру этот переход происходит с электронами валентной зоны и поток электронов будет направлен из узла кристаллической решетки в свободное состояние зоны проводимости. Это эффект называют также Зиннеровским пробоем или холодной эмиссией электронов. Он наблюдается в электрических полях с напряженностью 10 4 – 10 5 в/см.

Эффект Штарка

Эффект Штарка приводит к сдвигу энергии атомных уровней и расширению валентной зоны. Это аналогично уменьшению ширины запрещенной зоны и росту равновесной концентрации электронов и дырок.

В состояниях на расстоянии r 0 от ядра атома сила, действующая на электрон со стороны внешнего электрического поля, может уравновесить силу притяжения к ядру:

При этом возможен отрыв электрона от атома и перевод его в свободное состояние. Из формулы (7.6) расстояние ионизации равно:

Этот эффект понижает потенциальный барьер перехода электрона в свободное состояние на величину:

(7.7) .

Уменьшение потенциального барьера приводит к увеличению вероятности термического возбуждения на величину:

(7.8) .

Этот эффект наблюдается в электрических полях с напряженностью 10 5 – 10 6 в/см.

Эффект Гана

Этот эффект наблюдается в полупроводниках с двумя минимумами энергии зоны проводимости разной кривизны причем эффективная масса локального минимума должна быть больше эффективной массы основного состояния абсолютного минимума. При сильных уровнях инъекции электроны могут заполнять состояния основного минимума и переходить из основного минимума в другой локальный минимум. Поскольку масса электронов в локальном минимуме большая, то дрейфовая подвижность перешедших электронов будет меньше, что приведет к уменьшению электропроводности. Это уменьшение вызовет уменьшение тока и уменьшение инъекции в зону проводимости, что приведет к осаживанию электронов в основном минимуме зоны проводимости, восстановлению исходного состояния и увеличению тока. Вследствие этого возникают высокочастотные колебания тока.

Этот эффект наблюдался в GaAs n типа при подаче на образец длиной 0.025мм. импульса напряжения 16 в длительностью 10 8 Гц. Частота колебаний составляла 10 9 Гц.

Эффект Гана наблюдается в полях, при которых дрейфовая скорость сравнимой с тепловой скоростью электронов.

Экситоны в твердых телах

Природа экситона

Если кристалл возбуждается электромагнитным полем, то электроны из зоны проводимости переходят в валентную зону образуя электрон-дырочную пару: электрон в зоне проводимости и дырка в валентной зоне. Дырка представляется как положительный заряд, так как отсутствие отрицательного заряда электрона в электро ̶ нейтральной валентной зоне приводит к появления положительного заряда. Поэтому внутри пары происходит взаимодействие притяжения. Поскольку энергия притяжения отрицательна, то результирующая энергия перехода будет меньше чем энергия ширины запрещённой зоны на величину энергии притяжения между электроном и дыркой в паре. Эту энергию можно записать следующим образом:

где -e – заряд электрона, Ze - заряд атома, из которого перешёл электрон в зону проводимости, r eh – расстояние между электроном и дыркой, e- коэффициент, определяющий уменьшение взаимодействия между электроном и дыркой по сравнению с взаимодействиями точечных зарядов в вакууме или диэлектрическая постоянная микроскопического типа.

Если переход электрона происходит у нейтрального узла кристаллической решётки, то Z =1 и заряд дырки равен e заряду электрона с противоположным знаком. Если валентность узла отличается на единицу от валентности основных атомов кристаллической решётки, то Z =2.

Диэлектрическая проницаемость микроскопического типа e определяется двумя факторами:

· Взаимодействие между электроном и дыркой происходит в среде кристалла. Это поляризует кристаллическую решётку и сила взаимодействия между электроном и дыркой ослабляется.

· Электрон и дырку в кристалле нельзя представить как точечные заряды, а как заряды, плотности которых «размазаны» в пространстве. Это уменьшает силу взаимодействия между электроном и дыркой. Аналогичную ситуацию можно наблюдать в атомах. Взаимодействие между электронами в атоме в 5-7 раз меньше взаимодействия электрона с ядром, хотя расстояния между ними могут быть сравнимы. Это происходит вследствие того, что электроны на орбите не сосредоточены в одной точке, а характеризуются плотностью распределения, что уменьшает взаимодействие между ними. Ядро атома с хорошей степенью точности можно представить как точечный заряд, поэтому взаимодействие электронов с ядром будет больше взаимодействия между электронами, что и обеспечивает стабильность существования атомов.

Влияние этих двух факторов различно для экситонов различного типа: экситонов Френкеля (малого радиуса) и экситонов Ванье (большого радиуса).

Энергия и радиус экситона

Энергия связи экситона зависит от расстояния между электроном и дыркой. Электрон и дырка движутся относительно центра масс по орбите с радиусом экситона r eh . Для стабильного существования экситона необходимо, чтобы на орбите экситона образовывалась стоячая волна с числом волн n.. Откуда можно получить соотношение:

где р - количество движения электрона и дырки относительно друг друга. Количество движения можно выразить через кинетическую энергию Т относительного движения электрона и дырки: , где m приведённая масса экситона.

Приведённая масса экситона должна составляться из эффективных масс электрона и дырки, как средне гармоническая величина. Если масса дырки велика, то кинетическая энергия экситона или кинетическая энергия движения электрона относительно дырки должна определяться массой электрона. Поэтому

Если эффективные массы электронов и дырок равны, то приведённая масса экситона равна ½, если имеется локализованный экситон, то m h >>m e и приведённая масса экситона равна единице.

Для свободного экситона Z =1, m¢=1/2, энергия и радиус экситона равны

(8.7) .

Для локализованного экситона Z =2, m¢=1 энергия и радиус экситона равны

(8.8) .

Таким образом, получается, что энергия уровней свободного экситона в 8 раз меньше энергии локализованного экситона, а радиус в 4 раза больше.

Принцип минимума потенциальной энергии:

Любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна. Такое состояние является энергетически выгодным и наиболее устойчивым.

В соответствии с этим принципом, количество атомов активного вещества лазера, находящихся на нижнем энергетическом уровне, всегда больше, чем количество возбужденных атомов. При отключенной системе накачки населенность нижнего энергетического уровня максимальна, а наверху, на возбужденном уровне, атомов вообще нет или их крайне мало.

При включении накачки положение начинает меняться: часть атомов переходит в категорию «возбужденные». Чем больше мощность накачки, тем больше становится населенность верхнего уровня и меньше – нижнего.

Чем больше становится возбужденных атомов, тем больше вероятность переходов обратного направления, за счет спонтанного и индуцированного излучения. Но фотонные лавины возникать еще не могут.

Мы обсуждаем двухуровневую систему накачки: система накачивает атомы энергией, переводя их в возбужденное состояние, а они, спонтанно или через индуцированное излучение, соскакивают обратно, вниз.

Теория и практика показали, что максимум достижимого при работе двухуровневой системы накачки – динамическое равновесие при достижении численного равенства населенностей верхнего и нижнего энергетических уровней.

Но для работы лазера этого мало! «Наверху» атомов должно быть больше, чем «внизу».

Инверсная населенность - состояние активного вещества, при котором атомов, находящихся на возбужденном энергетическом уровне, больше , чем на нижнем, основном уровне .

Преодолеть ограниченные возможности двухуровневой системы накачки удалось с помощью системы трехуровневой. Появились и системы, имеющие большее число уровней.

Естественной для атомов является длительность их пребывания в возбужденном состоянии порядка τ 1 = 10 -8 с. Преодолеть такую быстроту возврата возбужденных атомов в устойчивое основное состояние удалось благодаря тому, что в квантовых системах могут существовать метастабильные состояния, с временем жизни τ , много большим, чем τ 1 = 10 -8 с. Метастабильное состояние (от греч. μετα «через» и лат. stabilis «устойчивый») – состояние квазиустойчивого равновесия, в котором система может находиться длительное время.

Длительность метастабильного состояния возбужденных атомов может достигать  2 = 10 -3 с. Обратите внимание: τ 2 > τ 1 в 100000 раз; и за такое время вполне удается создавать инверсную населенность, «перехитрив» принцип минимума потенциальной энергии. На рис. 3 представлена схема энергетических уровней трехуровневой системы накачки.

Рис. 3 Схема трехуровневой системы накачки.

Трехуровневая система накачки переводит атомы активного вещества на уровни Е 2 и Е 3 . При этом активное вещество имеет в окрестностях уровня Е 3 множество близко расположенных энергетических уровней с коротким временем жизни возбужденного состояния τ 3 . На схеме они не показаны; Е 3 – среднее значение их энергии.

Кванты, близкие к Е 3 , имеют повышенную вероятность быть поглощенными: любой квант энергии системы накачки на каком-нибудь из этих многих уровней пригодится, будет поглощен. Суммарный эффект: система накачки эффективно работает на повышение населенности энергетического уровня Е 3 благодаря тому, что он «широк по вертикали» за счет семейства близких уровней.

На схеме рис. 3 наклонной стрелкой показан переход с уровня Е 3 на уровень Е 2 , что символизирует безизлучательный переход возбужденных атомов на уровень Е 2 , благо обстановка позволяет: вместо большого перепада Е 3 – Е 2 имеется нечто в роде лесенки близких уровней.

Вклад «узкого» уровня Е 2 в создание своей же инверсной населенности есть, но он – гораздо скромнее.

Прохождение излучения через вещество. Инверсная населенность уровней. Снова рассмотрим двухуровневую среду с энергетическими уровнями и . Если на эту среду падает монохроматическое излучение с частотой

то при распространении его на расстояние dx изменение спектральной плотности энергии будет связано как с резонансным поглощением, так и с индуцированным (вынужденным) излучением атомов системы. За счет индуцированного излучения спектральная плотность энергии в пучке возрастает, причем это увеличение энергии должно быть пропорционально:

.

Здесь - размерный коэффициент пропорциональности.

Аналогично за счет процессов поглощения фотонов спектральная плотность энергии в пучке уменьшается:

.

Складывая и , находим полное изменение плотности энергии:

Учитывая равенство коэффициентов Эйнштейна и вводя коэффициент поглощения a , записываем это уравнение в виде

Решение этого дифференциального уравнения имеет вид

.

Эта формула дает спектральную плотность энергии u в пучке фотонов при прохождении ими слоя вещества толщиной x , где соответствует точке x = 0 .

В условиях термодинамическою равновесия, в соответствии с распределением Больцмана, , поэтому коэффициент поглощения а положителен ():

Таким образом, плотность энергии излучения, как видно из (6.18), убывает по мере прохождения через вещество, то есть свет поглощается. Однако, если создать систему, в которой , то коэффициент поглощения станет отрицательным и будет иметь место не ослабление, а усиление интенсивности света. Состояние среды, в котором называется состоянием с инверсной населенностью уровней , а сама среда называется тогда активной средой . Инверсная населенность уровней противоречит равновесному распределению Больцмана и может быть создана искусственно, если система выведена из состояния термодинамического равновесия.

Это создает принципиальную возможность усиления и генерации когерентного оптического излучения и используется на практике при разработке источников такого излучения - лазеров.

Принцип работы лазера. Создание лазера стало возможным после того, как были найдены способы осуществления инверсной населенности уровней в некоторых веществах (активных средах). Первый практический генератор в видимой области спектра был создан в (США Мейманом (1960)) на основе рубина. Рубин представляет собой кристаллическую решетку , содержащую небольшую (0,03 % – 0,05 % ) примесь ионов хрома (). На рис. 6.1 представлена схема энергетических уровней хрома (трехуровневая среда ). Широкий уровень используется для возбуждения ионов хрома светом мощной газоразрядной лампы с широкой полосой частот в зелено-голубой области видимого света - лампы накачки . Возбуждение ионов хрома за счет энергии накачки от внешнего источника изображено стрелкой .


Рис. 6.1. Схема активной трехуровневой среды (рубин)

Электроны с короткоживущего уровня совершают быстрый ( c ) безызлучательный переход на уровень (изображен синей стрелкой). Выделяемая при этом энергия не испускается в виде фотонов, а передается кристаллу рубина. При этом рубин нагревается, поэтому в конструкции лазера предусматривается его охлаждение.

Время жизни долгоживущего узкого уровня составляет c , то есть на 5 порядков больше, чем у широкополосного уровня . При достаточной мощности накачки число электронов на уровне (его называют метастабильным ) становится больше, чем на уровне , то есть создается инверсная населенность между «рабочими» уровнями и .

Излученный при спонтанном переходе между этими уровнями фотон (изображен штриховой стрелкой ) индуцирует испускание дополнительных (вынужденных) фотонов - (переход показан стрелкой ), которые в свою очередь вызывают индуцированное излучение целого каскада фотонов с длиной волны .

Пример 1. Определим относительную населенность рабочих уровней в кристалле рубина при комнатной температуре в условиях термодинамического равновесия.

Исходя из длины волны, испускаемой рубиновым лазером, находим разность энергий:

.

При комнатной температуре Т = 300 К имеем:

Из распределения Больцмана следует теперь

.

Реализация активной среды с инверсной населенностью уровней - это лишь половина дела. Для работы лазера необходимо также создать условия для генерации света, то есть использовать положительную обратную связь . Активная среда сама по себе способна лишь усиливать проходящее излучение. Для осуществления режима генерации необходимо такое усиление индуцированного излучения, которое компенсировало бы все потери в системе. Для этого активное вещество помещают в оптический резонатор , образованный, как правило, двумя параллельными зеркалами, одно из которых является полупрозрачным и служит для вывода излучения из резонатора. Конструктивно в первых лазерах на рубине использовались кристаллы цилиндрической формы длиной 40 мм и диаметром 5 мм . Торцы были отполированы параллельно друг другу и служили зеркалами резонатора. Один из торцов был посеребрен так, что коэффициент отражения был близок к единице, а другой торец был полупрозрачным, то есть имел коэффициент отражения меньше единицы, и использовался для вывода излучения из резонатора. Источником возбуждения служила мощная импульсная ксеноновая лампа, обвивающая рубин спиралью. Устройство рубинового лазера схематически представлено на рис. 6.2.


Рис. 6.2. Устройство рубинового лазера: 1 - рубиновый стержень; 2 - импульсная газоразрядная лампа; 3 - полупрозрачное зеркало; 4 - зеркало; 5 - индуцированное излучение

При достаточной мощности лампы накачки большинство (около половины) ионов хрома переводится в возбужденное состояние. После того как достигается инверсная населенность для рабочих уровней с энергией и , первые спонтанно излучаемые фотоны, соответствующие переходу между этими уровнями, не имеют преимущественного направления распространения и вызывают индуцированное излучение, распространяющееся также по всем направлениям в кристалле рубина. Напомним, что фотоны, возникающие при вынужденном излучении, летят в том же направлении, что и падающие фотоны. Фотоны, направления движения которых образуют малые углы с осью кристаллического стержня, испытывают многократные отражения от его торцов. Фотоны же, распространяющиеся в других направлениях, выходят из кристалла рубина через его боковую поверхность и не участвуют в формировании выходящего излучения. Так в резонаторе генерируется узкий пучок света, а многократное прохождение фотонов через активную среду индуцирует излучение все новых и новых фотонов, усиливая интенсивность выходного пучка.

Генерация светового излучения рубиновым лазером показана на рис. 6.3.

Рис. 6.3. Генерация излучения рубиновым лазером

Таким образом, оптический резонатор выполняет две функции: во-первых, создает положительную обратную связь и, во-вторых, формирует узкий направленный пучок излучения с определенной пространственной структурой.

В рассмотренной трехуровневой схеме для создания инверсной населенности между рабочими уровнями нужно возбудить достаточно большую долю атомов, что требует значительных затрат энергии. Более эффективной является четырехуровневая схема , которая применяется в твердотельных лазерах, например, с использованием ионов неодима . В наиболее распространенном газовом лазере на нейтральных атомах - гелий - неоновом лазере - также выполняются условия для генерации по четырехуровневой схеме. Активной средой в таком лазере является смесь инертных газов - гелия и неона с энергией основного состояния (которую мы принимаем за нулевой уровень ). Накачка осуществляется в процессе электрического газового разряда, благодаря которому атомы переходят в возбужденное состояние с энергией . Уровень в атомах неона (рис. 6.4) близок к уровню в гелии, и при столкновении атомов гелия с атомами неона энергия возбуждения может быть эффективно передана последним без излучения.

Рис. 6.4. Схема уровней Не - Ne -лазера

Таким образом, уровень неона оказывается более населенным, нежели более низкий уровень . Переход между этими рабочими уровнями сопровождается излучением с длиной волны 632.8 нм , которая является основной в промышленных Не-Ne -лазерах. На уровне атомы неона долго не задерживаются, быстро возвращаясь в основное состояние. Заметим, что уровень в неоне заселен крайне незначительно, и потому для создания инверсной населенности между и надо возбудить небольшое число атомов гелия. Это требует гораздо меньших затрат энергии как на накачку, так и на охлаждение установки, что характерно для четырехуровневой схемы генерации. Для лазерной генерации могут быть использованы и другие уровни неона (не показаны на рис. 6.4), дающие излучение как в видимом, так и в ИК-диапазоне, причем гелий используется только для процесса накачки.

Пример 2. Найдем относительную равновесную населенность уровня в неоне при комнатной температуре.

Эта задача отличается от предыдущей лишь численными значениями. Для разнообразия проведем вычисления в электрон-вольтах. Выразим сначала в этих единицах постоянную Больцмана:

так что при комнатной температуре

.

Теперь легко находим

Столь малое число с практической точки зрения не отличается от нуля, поэтому даже при слабой накачке создается инверсная населенность между уровнями и .

Излучение лазеров отличается характерными особенностями:

    высокой временной и пространственной когерентностью (монохроматичность излучения и малая расходимость пучка);

    высокой спектральной интенсивностью.

Характеристики излучения зависят от типа лазера и режима работы, однако можно отметить некоторые близкие к предельным значения параметров:

Короткие (пикосекундные) импульсы лазера незаменимы при изучении быстротекущих процессов. В импульсе может развиваться чрезвычайно высокая пиковая мощность (до нескольких ГВт), что равно мощности нескольких блоков АЭС по миллион кВт каждый. При этом излучение может быть сосредоточено в узком конусе. Такие пучки позволяют, например, «приваривать» сетчатку к глазному дну.

Типы лазеров. В рамках курса общей физики мы не можем остановиться подробно на специфических особенностях и технических применениях лазеров различных типов ввиду их чрезвычайного многообразия. Ограничимся лишь достаточно кратким обзором типов лазеров, различающихся характеристиками активной среды и способами накачки.

Твердотельные лазеры. Обычно они бывают импульсными, первым таким лазером был описанный выше рубиновый. Популярны лазеры на стекле с неодимом в качестве рабочего вещества. Они генерируют свет с длиной волны порядка 1,06 мкм , имеют большие размеры и пиковую мощность до ТВт. Могут быть использованы для экспериментов по управляемому термоядерному синтезу. Пример - огромный лазер «Шива» в Ливерморской лаборатории в США.

Очень распространены лазеры на иттрий-алюминиевом гранате с неодимом (Nd:YAG), излучающие в ИК-диапазоне на длине волны мкм . Они могут работать как в непрерывном режиме генерации, так и в импульсном, с частотой повторения импульсов до нескольких кГц (для сравнения: у рубинового лазера - 1 импульс в несколько минут). Имеют широкий спектр применений в электронной технике (лазерная технология), оптической локации, медицине и др.

Газовые лазеры. Обычно это лазеры непрерывного действия. Отличаются правильной пространственной структурой пучка. Пример: гелий-неоновый лазер, генерирующий свет на длинах волн 0,63 , 1,15 и 3,39 мкм и имеющий мощность порядка мВт. В технике широко используется - лазер с мщностью порядка кВт и длинами волн 9,6 и 10,6 мкм . Один из способов накачки газовых лазеров - электрический разряд. Разновидность лазеров с активной газовой средой - химические и эксимерные лазеры.

Химические лазеры. Инверсная населенность создается в процессе химической реакции между двумя газами, например водородом (дейтерием) и фтором. В основе лежат экзотермические реакции

.

Молекулы HF уже рождаются с возбуждением колебаний, что сразу создает инверсную населенность. Образовавшаяся рабочая смесь пропускается со сверхзвуковой скоростью через оптический резонатор, в котором в виде электромагнитного излучения выделяется часть накопленной энергии. С помощью системы зеркал резонатора это излучение фокусируется в узкий луч. Такие лазеры излучают большую энергию (более 2 кДж ), длительность импульса около 30 нс , мощность до Вт . КПД (химический) достигает 10 % , в то время как обычно для других типов лазеров - доли процента. Генерируемая длина волны - 2,8 мкм (3,8 мкм для лазеров на DF ).

Из многочисленных типов химических лазеров наиболее перспективными признаны лазеры на фтористом водороде (дейтерии). Проблемы: излучение лазеров на фтористом водороде с указанной длиной волны активно рассеивается молекулами воды, всегда имеющимися в атмосфере. Это намного ослабляет яркость излучения. Лазер на фтористом дейтерии работает на длине волны, для которой атмосфера практически прозрачна. Однако удельное энерговыделение таких лазеров в полтора раза меньше, чем у лазеров на HF . Это значит, что при использовании их в космосе придется выводить гораздо большее количество химического топлива.

Эксимерные лазеры. Молекулы эксимера - это двухатомные молекулы (например, ), которые могут находиться только в возбужденном состоянии - невозбужденное состояние у них оказывается неустойчивым. С этим связана основная особенность эксимерных лазеров: основное состояние эксимерных молекул является незаполненным, то есть нижний рабочий лазерный уровень всегда оказывается пустым. Накачка осуществляется импульсным электронным пучком, который переводит значительную часть атомов в возбужденное состояние, в котором они и объединяются в эксимерные молекулы.

Поскольку переход между рабочими уровнями является широкополосным, возможна перестройка частоты генерации. Лазер на дает перестраиваемые излучения в области УФ ( нм ) и имеет высокую эффективность (20 % ) преобразования энергии. В настоящее время эксимерные -лазеры с длиной волны 193 нм используются в офтальмологической хирургии для поверхностного испарения (абляции) роговицы.

Жидкостные лазеры. Активное вещество в жидком состоянии однородно и допускает циркуляцию с целью охлаждения, что создает преимущества перед твердотельными лазерами. Это позволяет получить большие энергии и мощности в импульсном и непрерывном режимах. В первых жидкостных лазерах (1964–1965) использовались соединения редкоземельных элементов. На смену им пришли лазеры на растворах органических красителей.

В таких лазерах обычно используется оптическая накачка излучения других лазеров видимого или УФ-диапазона. Интересным свойством лазеров на красителях является возможность перестройки частоты генерации. Подбором красителя можно получить генерацию на любой длине волны от ближнего ИК- до ближнего УФ-диапазона. Это связано с широкими сплошными колебательно-вращательными спектрами молекул жидкости.

Полупроводниковые лазеры. В отдельный класс выделяются твердотельные лазеры на полупроводниковых материалах. Накачка производится бомбардировкой пучком электронов, мощным лазерным облучением, но чаще - методами электроники. В полупроводниковых лазерах используются переходы не между дискретными уровнями энергии отдельных атомов или молекул, а между разрешенными энергетическими зонами, то есть совокупностями близко расположенных уровней (об энергетических зонах в кристаллах подробнее говорится в последующих разделах). Использование различных полупроводниковых материалов позволяет получать излучение на длинах волн от 0,7 до 1,6 мкм . Размеры активного элемента чрезвычайно малы: длина резонатора может быть менее 1 мм .

Типичная мощность порядка нескольких кВт, длительность импульса около 3 нс , эффективность достигает 50 % , имеют широкое применение (волоконная оптика, связь). Могут быть использованы для проецирования телевизионного изображения на большой экран.

Лазеры на свободных электронах. Пучок высокоэнергетических электронов пропускается через «магнитную гребенку» - пространственно-периодическое магнитное поле, вынуждающее электроны колебаться с заданной частотой. Соответствующее устройство - ондулятор - представляет собой ряд магнитов, которые располагаются между секциями ускорителя, так что релятивистские электроны движутся вдоль оси ондулятора и совершают поперечные ей колебания, излучая первичную («спонтанную») электромагнитную волну. В открытом резонаторе, куда далее поступают электроны, спонтанная электромагнитная волна усиливается, создавая когерентное направленное лазерное излучение. Главная особенность лазеров на свободных электронах состоит в возможности плавной перестройки частоты генерации (от видимого до ИК-диапазона) за счет изменения кинетической энергии электронов. КПД таких лазеров составляет 1 % при средней мощности до 4 Вт . С использованием устройств возврата электронов в резонатор КПД может быть увеличен до 20–40 % .

Рентгеновский лазер с ядерной накачкой. Это наиболее экзотический лазер. Схематично он представляет собой ядерную боеголовку, на поверхности которой укреплено до 50 металлических стержней, ориентированных в разных направлениях. Стержни имеют две степени свободы и, подобно стволам орудий, могут направляться в любую точку пространства. Вдоль оси каждого стержня расположена тонкая проволока из материала высокой плотности (порядка плотности золота) - активная среда. Источником энергии накачки лазера служит ядерный взрыв. При взрыве активное вещество переходит в плазменное состояние. Мгновенно остывая, плазма испускает когерентное излучение в мягком рентгеновском диапазоне. Из-за высокой концентрации энергии излучение, попадая на цель, приводит к взрывному испарению вещества, образованию ударной волны и разрушению цели.

Таким образом, принцип действия и устройство рентгеновского лазера делают очевидным и область его применения. В описанном лазере не предусмотрены зеркала резонатора, использование которых в рентгеновском диапазоне не представляется возможным.

Некоторые виды лазеров показаны на рисунке ниже.

Некоторые виды лазеров: 1 - лабораторный лазер; 2 - лазер непрерывного действия на ;
3
- технологический лазер для пробивания отверстий; 4 - мощный технологический лазер

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: