Практическая психология

Рецепторы, их классификация. Механизм возникновения возбуждения в рецепторах. Рецепторный и генераторный потенциал.

Рецептор - Это специализированная структура, воспринимающая раздражители из внешней или внутренней среды организма и трансформирующая их энергию в биоэлектрический потенциал. Рецептором может быть высокочувствительное окончание сенсорного нейрона (например, терморецепторы, хеморецепторы, механорецепторы и др.). Рецептором может быть особая специализированная клетка , которая, с одной стороны, контактирует с раздражителем, а с другой - с сенсорным нейроном (например, волосковые клетки кортиевого органа или фоторецепторы сетчатки глаза).

функциональные (физиологические) классификации рецепторов.

По отношению к раздражителям, поступающим из внешней или внутренней среды:

а)экстерорецепторы – воспринимают раздражители из внешней среды;

б)интерорецепторы – воспринимают раздражители изнутри организма. Их еще называют висцерорецепторы. Они располагаются во внутренних органах, выводных протоках, сосудах и т. д.

Отдельно выделяют проприорецепторы и вестибулорецепторы :

· проприорецепторы - находятся в мышцах, сухожилиях и связках. Они воспринимают изменения в состоянии опорно-двигательного аппарата, возникающие в результате активных и пассивных движений.

· вестибулорецепторы – находятся во внутреннем ухе, являются составной частью вестибулярного аппарата и реагируют на изменение положения головы и всего тела в пространстве.

По природе адекватного раздражителя:

а)механорецепторы – реагируют на механическое воздействие;

б)хеморецепторы – реагируют на различные по степени сложности химические вещества;

в)фоторецепторы – реагируют на кванты света;

г)терморецепторы – реагируют на абсолютную величину температуры во внутренней или внешней среде, а также на ее изменение;

д) осморецепторы – реагируют на величину осмотического давления

(в крови, тканевой жидкости, ликворе).

По характеру субъективных ощущений:

а)зрительные (ощущение света);

б)слуховые (ощущение звука);

в)вкусовые (ощущение вкуса);

г)обонятельные (ощущение запаха);

д)тактильные (ощущение прикосновения);

е)температурные (ощущение тепла и холода);

ж)вестибулярные (ощущение положения и перемещения тела в пространстве);

з)проприорецепторы (ощущение движения, вибрации, положения тела в пространстве)

и)ноцирецепторы (ощущение боли).

По месту возникновения возбуждения:

а)первичночувствующие (первичные) - в них рецепторный потенциал и потенциал действия (см. вопросы 3,4) возникают на одном и том же сенсорном нейроне, только в разных его участках. Например, в тельце Пачини, реагирующем на давление или на вибрацию, рецепторный потенциал возникает на рецепторной мембране, на которой нет быстрых натриевых каналов (см. вопрос 5) , а потенциал действия - на электро-возбудимой мембране, являющейся продолжением рецепторной

б)вторичночувствующие (вторичные) – в них рецепторный потенциал и потенциал действия возникают в разных клетках: рецепторный потенциал - в специальной рецепторной клетке, а потенциал действия – в сенсорном нейроне. Например, в зрительном анализаторе рецепторный потенциал возникает в палочках или в колбочках, а потенциал действия в ганглиозных клетках, отростки которых формируют зрительный нерв (рис 2Б). Причем между рецепторной клеткой и ганглиозным нейроном находятся биполярные нейроны, в которых возникает генераторный потенциал (см. вопрос 7) ;

По степени возбудимости:

а)низкопороговые (обладают более высокой возбудимостью);

б)высокопороговые (обладают более низкой возбудимостью).

По количеству воспринимаемых модальностей:

(см. классификацию нейронов)

а)мономодальные;

б)полимодальные.

По количеству воспринимаемых валентностей:

(см. классификацию нейронов)

а)моновалентные;

б)поливалентные.

По способности к адаптации:

а)быстро адаптирующиеся (рис. 3А);

б)медленно адаптирующиеся (рис. 3Б);

в)неадаптирующиеся (рис. 3В).

Механизм возникновения возбуждения в первичночувствующих рецепторах напоминает механизм возникновения возбуждения на постсинаптической мембране химического синапса) и состоит в следующем. Сначала под действием раздражителя на рецепторной мембране возникает рецепторный потенциал (РП). Поскольку РП – это всегда уменьшение степени поляризации мембраны (гиперполяризационный РП не дает возбуждения), то между частично деполяризованной рецепторной мембраной и соседним участком электровозбудимой мембраны возникают локальные токи, которые деполяризуют электровозбудимую мембрану до критического уровня, а значит, приводят к возникновению ПД.

Поверхностная клеточная мембрана не имеет «быстрых» (электровозбудимых) натриевых каналов. Поэтому здесь не может произойти перезарядка поверхностной мембраны, но возможно изменение мембранного потенциала покоя при действии раздражителей. Это изменение мембранного потенциала покоя носит название рецепторный потенциал (РП).

В большинстве рецепторных образований происхождение РП связано с тем, что при действии адекватного раздражителя на рецепторной мембране увеличивается проницаемость для ионов натрия, которые через открывающиеся «медленные» (хемовозбудимые, механовозбудимые и др.) каналы проникают по градиенту концентрации внутрь клетки и деполяризуют поверхностную клеточную мембрану. Степень этой деполяризации (амплитуда РП) зависит от силы раздражителя, то есть чем выше сила раздражителя, тем больше деполяризация мембраны. Эта деполяризация локальна и не распространяется на соседние участки (так как электровозбудимых каналов здесь нет). Таким образом, РП – это по сути дела локальный, или градуальный ответ и проявляется в местной деполяризации мембраны.

В палочках и колбочках (зрительный анализатор) в ответ на воздействие кванта света возникает гиперполяризация поверхностной клеточной мембраны. Гиперполяризационный РП может возникнуть и в вестибулорецепторах преддверия улитки и ампул полукружных каналов

Генераторным называется потенциал, который является причиной возникновения возбуждения в рецепторе. Поэтому рецепторный потенциал иногда называют генераторным. Но чаще генераторным называют потенциал, возникающий во вторичночувствующих рецепторах на клетке, которая располагается вслед за рецепторной. Эта клетка воспринимает информацию от рецепторной клетки (в виде порции медиатора) и изменяет в связи с этим свой мембранный потенциал (рис. 2Б). Это изменение МПП носит название генераторного потенциала (ГП). В свою очередь ГП является причиной возникновения ПД на последующей в этой цепочке - нервной клетке (то есть, генерирует ПД). Например, в зрительном анализаторе ГП возникает на биполярном нейроне, который деполяризуется за счет медиатора, выделяющегося из палочки или колбочки. В свою очередь биполярный нейрон при возникновении ГП также выделяет медиатор, за счет которого возникает возбуждение на ганглиозном нейроне. Далее возбуждение по аксону ганглиозной клетки, в составе зрительного нерва, распространяется по проводниковому отделу зрительного анализатора.

Синапсы, их строение, классификация и функциональные свойства. Особенности передачи возбуждения в них. Механизм формирования ВПСП. Понятие ою электрических синапсах и особенностях передачи возбуждения в них.

Понятие синапс ввел в физиологию известный английский физиолог Чарльз Шеррингтон (1897) для обозначения функционального контакта между нейронами. Под синапсом понимают специализированный межклеточный контакт, предназначенный для передачи информации с нейрона на любую другую возбудимую клетку (нервную, мышечную или железистую).

Существует несколько принципов, согласно которым одни и те же синапсы могут быть классифицированы по-разному

По виду соединяемых клеток:

а) межнейрональные – обеспечивают связь между нейронами, располагающимися как в самой ЦНС, так и за ее пределами;

б) нейроэффекторные – обеспечивают связь между нейроном и эффекторной клеткой (мышечной или секреторной);

в) нейрорецепторные – обеспечивают связь между нейроном и рецептором сенсорного нейрона (таким образом обеспечивается контроль за работой рецепторов, то есть модулируется их возбудимость).

По месту расположения:

а) центральные – расположены в ЦНС,

б) периферические – расположены вне ЦНС (мионевральные, ганглионарные и др.).

По функциональному эффекту:

а) возбуждающие – передают возбуждение на постсинаптическую структуру;

б) тормозные – препятствуют передаче возбуждения на постсинаптическую структуру.

По механизму передачи возбуждения:

А) химические;

Под влиянием раздражения рецепторов в них возникают нервные импульсы, т. е. они как бы трансформируют раздражение в возбуждение. На этом основании рецепторы нередко сравнивают с применяемыми в технике датчиками-преобразователями, в которых при приложении внешних воздействий происходит генерирование электрического тока или напряжения или изменение их электрических характеристик. Такое сравнение весьма условно. В отличие от процессов, возникающих в датчиках-преобразователях, работа которых происходит за счет воздействующей на них энергии, трансформирование энергии раздражения в процесс возбуждения в рецепторах происходит за счет обмена веществ самих рецепторов, а не за счет приложенной к ним внешней энергии. Механизм возникновения возбуждения в рецепторах достаточно сложен.

Внешний стимул, действуя на рецептор, вызывает деполяризацию его поверхностной мембраны. Эту деполяризацию, сходную по свойствам локальным ответом , называют рецепторным, или генераторным, потенциалом. Рецепторный потенциал не подчиняется закону «все или ничего», зависит от силы раздражителя, способен суммироваться ори применении быстро следующих друг за другом раздражителей и не распространяется вдоль нервного волокна.

Одной из отличительных особенностей рецепторного потенциала является его длительность: в некоторых рецепторах он может сохраняться неизменным в течение многих минут, пока действует раздражитель; в прессорецепторах каротидного синуса, реагирующих на повышение артериального давления, зарегистрированы рецепторные потенциалы, длящиеся несколько часов. Поддержание столь длительной деполяризации мембраны связано с затратой энергии, освобождаемой в результате процессов обмена веществ; поэтому понятно, что вещества, нарушающие внутриклеточные окислительные процессы, приводят к исчезновению рецепторных потенциалов.

Имеются данные, что рецепторный потенциал возникает в результате освобождения в рецепторе под влиянием раздражения ацетилхолина, который изменяет проницаемость мембраны, что и приводит к ее деполяризации. Такой эффект наблюдали при введении ацетилхолина в область расположения рецепторов.

В фоторецепторах возникновение генераторного потенциала связано с реакцией разложения зрительного пурпура. Рецепторный потенциал может возникать в ряде рецепторов в результате непосредственного изменения свойств поверхностной мембраны под влиянием действующих на нее раздражений, без промежуточного химического звена.

Когда рецепторный потенциал достигает определенной-критически величины, он вызывает разряд афферентных импульсов в нервном волокне, связанном с рецептором. Этот разряд возникает в первом ближайшем к рецептору перехвате Ранвье. Новокаин, уничтожающий чувствительность рецепторов, не действует на рецепторный потенциал, но прекращает возникновение разряда афферентных импульсов в нервных волокнах.

Как показано прямыми измерениями, произведенными на некоторых объектах экспериментов, например на мышечных веретенах лягушки, частота афферентных импульсов в нервных волокнах прямо пропорциональна величине деполяризации мембраны рецептора, т. е.величине рецепторного потенциала (рис. 189, А ). Вместе с тем частота афферентных разрядов в нервном волокне пропорциональна логарифму силы раздражения (рис. 189, Б ).

Из сопоставления этих фактов следует, что между силой раздражения и величиной рецепторного потенциала имеется не прямая, а логарифмическая зависимость. Эти электрофизиологические наблюдения соответствуют предложенному Г. Фехнером математическому выражению .

Рис. 189. Соотношение между частотой импульсов и деполяризацией мембраны рецептора мышечного веретена лягушки (по Б. Катцу) (А) и соотношение между частотой импульсов в мышечном веретене и логарифмом нагрузки, действующей на мышцу (по Б. Меттьюсу) (Б). Кружки показывают результаты отдельных опытов.

Классификация рецепторов и механизмы их возбуждения

Рецепторами называются специальные образования, транс­формирующие (преобразующие) энергию внешнего раздражения в спе­цифическую энергию нервного импульса.

Все рецепторы по характеру воспринимаемой среды делятся на экстерорецепторы, интерорецепторы и проприорецепторы. Экстерорецепторы принимают раздражения из внешней среды, (рецепторы органов слуха, зрения, обоняния, вкуса, осяза­ния). Интерорецепторы реагируют на раздражения из внутренних органов. Проприорецепторы воспринимают раздражения из двигательного аппарата (мышц, сухожилий, сустав­ных сумок).

По виду воспринимаемых раздражений различают хеморецеп­торы (рецепторы вкусовой и обонятельной сенсорных систем, хеморецепторы сосудов и внутренних органов); механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем); фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепто­ры температурной сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зри­тельные и слуховые) и контактные, принимающие непосред­ственные воздействия (тактильные и др.)

По структурным особенностям различают первичные и вторичные рецепторы. Первичные рецепторы - это окончания чувствительных биполярных клеток, тело которых нахо­дится вне ЦНС, один отросток подходит к воспринимающей раздра­жение поверхности, а другой направляется в ЦНС (например, про­приорецепторы, терморецепторы, обонятельные клетки). Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя (например, фоторецепторы глаза).

В первичных рецепторах энергия внешнего раздражителя непосред­ственно преобразуется в нервный импульс в одной и той же клетке. В периферическом окончании чувствительных клеток при действии раздражителя возникает повышение проницаемости мембраны и ее деполяризация, возникает местное возбуждение - рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервно­му волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецеп­торного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-ре­цептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала или так называемого генераторного потен­циала. При достижении порога возбудимости в волокне чувстви­тельного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенци­ал, а другая - в генераторный потенциал и потенциал действия.

Физиология сенсорных систем

1.Общие принципы строения сенсорных систем. Основные функции сенсорной системы: обнаружение, различение, передача и преобразование, кодирование, детектирование признаков, опознание образов. Адаптация сенсорной системы.

Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) многослойность, т. е. наличие нескольких слоев нервных

клеток, первый из которых связан с рецепторами, а последний -с нейронами моторных областей коры большого мозга. Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы

2) многоканальность сенсорной системы, т. е. наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Наличие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и детальность анализа сигналов и большую надежность;

3) разное число элементов в соседних слоях, что формирует «сенсорные воронки». Так, в сетчатке глаза человека насчитывается 130 млн фоторецепторов, а в слое ганглиозных клеток сетчатки нейронов в 100 раз меньше («суживающаяся воронка»).

На следующих уровнях зрительной системы формируется «расширяющаяся воронка»:. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяющаяся воронка». Физиологический смысл «суживающейся воронки» заключается в уменьшении избыточности информации, а«расширяющейся» - в обеспечении дробного и сложного анализа разных признаков сигнала;

4) дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Таким образом, отдел представляет собой более крупное морфофункциональное образование, чем слой нейронов. Каждый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определенную функцию. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев. Так, в зрении работают два параллельных нейронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов. Оно начинается в рецепторе - специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки; 2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки; и 3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала). В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия - электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа. В первично-чувствующих рецепторах рецепторный и генераторный потенциалы - одно и то же.

Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог - обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высокие - надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал.

Различение сигналов. Важная характеристика сенсорной системы - способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).

Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю (закон Вебера). Так, усиление давления на кожу руки ощущается, если увеличить груз на 3% (к 100-граммовой гирьке надо добавить 3 г, а к 200-граммовой - 6 г).

Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала. Так, в зрительной и соматосенсорной системах на корковом уровне значительно искажаются геометрические пропорции представительства отдельных частей тела или частей поля зрения. В зрительной области коры резко расширено представительство информационно наиболее важной центральной ямки сетчатки при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной области коры также преимущественно представлены наиболее важные для тонкого различения и организации поведения зоны - кожа пальцев рук и лица («сенсорный гомункулюс»).

Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней.

Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.

Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

Адаптация сенсорной системы

Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сен сорная адаптация - общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.

В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.

2.Классификация и свойства рецепторов. Механизмы возбуждения первично- и вторичночувствующих рецепторов.

В зависимости от строения рецепторов их подразделяют на первичные , или первичночувствующие , которые являются специализированными окончаниями чувствительного нейрона, и вторичные , или вторичночувствующие , представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула. Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы , проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала , от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.

Классификация рецепторов. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодальным. Их можно возбудить и некоторыми неадекватными раздражителями, например фоторецепторы - сильным давлением на глазное яблоко, а вкусовые рецепторы - прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно. Наряду с мономодальными существуют полимодальные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат. nocens - вредный), которые можно возбудить механическими, термическими и химическими стимулами. Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.

В зависимости от строения рецепторов их подразделяют на первичные , или первичночувствующие , которые являются специализированными окончаниями чувствительного нейрона, и вторичные , или вторичночувствующие , представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула. Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы , проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала , от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.



В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы ; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые - внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.

Классификация рецепторов. В основу классификации рецепторов положено несколько критериев.

Психофизиологический характер ощущения: тепловые, холодовые, болевые и др.

Природа адекватного раздражителя: механо-, термо-, хемо-, фото-, баро-, осмбрецепторы и др.

Среда, в которой рецептор воспринимает раздражитель: экстеро-, интерорецепторы.

Отношение к одной или нескольким модальностям: моно- и полимодальные (мономодальные преобразуют в нервный импульс только один вид раздражителя - световой, температурный и т. д., полимодальные могут несколько раздражителей преобразовать в нервный импульс - механический и температурный, механический и химический и т. д.).

Способность воспринимать раздражитель, находящийся на расстоянии от рецептора или при непосредственном контакте с ним: контактные и дистантные.

Уровень чувствительности (порог раздражения): низкопороговые (механорецепторы) и высокопороговые (ноцицепторы).

Скорость адаптации: быстроадаптирующиеся, (тактильные), медленноадаптирующиеся (болевые) и неадаптирующиеся (вестибулярные рецепторы и проприорецепторы).

Отношение к различным моментам действия раздражителя: при включении раздражителя, при его выключении, на протяжении всего времени действия раздражителя.

Морфофункциональная организация и механизм возникновения возбуждения: первичночувствующие и вторичночувствующие.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: