Практическая психология

ОПРЕДЕЛЕНИЕ

Инертные или благородные газы находятся в VIIIA группе Периодической системы химических элементов Д.И. Менделеева – это гелий, неон, аргон, криптон, ксенон и радон .

Каждый период Периодической системы заканчивается инертным газом, кроме гелия, все они имеют на внешнем энергетическом уровне по 8 электронов, образующих очень устойчивую систему, в связи с чем эти элементы получили название инертных. Несмотря на то, что электронная оболочка гелия состоит из двух электронов, она также очень устойчива. В связи с этим явлением атомы инертных газов обладают высокими значениями энергий ионизации и, как правило, отрицательными значениями энергии сродства к электрону.

Электронная конфигурация внешнего энергетического уровня инертных газов – 1s 2 (He) и ns 2 np 6 для других инертных газов.

Изначально предполагали, что атомы инертных газов не способны к образованию химических связей с другими элементами. Были известны лишь несколько нестойких соединений благородных газов – гидраты аргона, криптона и ксенона (Ar×6H 2 O, Kr×6H 2 O, Xe×6H 2 O), которые получались при действии инертных газов на кристаллизующуюся переохлажденную воду.

Позже, было установлено, что Kr, Xe и Rn вступают в реакции взаимодействия с другими веществами, например, с фтором, при нагревании или электрическом разряде. Для ксенона известны оксид – XeO 3 и гидроксид- Xe(OH) 6 .

Наибольшее практическое применение среди всех благородных газов находят аргон, неон и гелий.

Гелий

По физическим свойствам гелий наиболее близок к молекулярному водороду. В связи с малой поляризуемостью атома гелия, у него самые низкие температуры кипения и плавления, по сравнению с другими элементами VIIIA группы. Однако, он хуже, чем другие инертные газы растворим в воде.

В обычных условиях гелий химически инертен, но в возбужденном состоянии он способен образовывать неустойчивые молекулярные ионы He 2 + или ионизированные молекулы HeH + .

Гелий – наиболее распространенный из элементов космоса, после водорода и состоит из двух изотопов — 4 He и 3 He. Доказано присутствие гелия в атмосфере Солнца, звезд и в метеоритах.

Гелий получают из некоторых природных газов методом глубокого охлаждения, при этом гелий остается в газообразном состоянии, в то время как другие газы конденсируются.

Гелий нашел применение в атомной энергетике, при автогенной сварке металлов, в физических лабораториях в качестве хладоносителя. Изотоп гелия 3 He – единственное вещество, пригодное для измерения температур ниже 1К.

Неон. Аргон

Основное отличие неона от гелия – большая поляризуемость атома, склонность к образованию межмолекулярных связей, несколько большая растворимость и способность адсорбироваться.

Агрон, как и неон, имеет 8 электронов на внешнем энергетическом уровне и, вследствие высокой устойчивости электронной структуры атома неона, он не способен к образованию соединений валентного типа. Аргон образует молекулярные соединения включения – клатраты – с водой, фенолом, толуолом и другими веществами. С сединениями H 2 S, SO 2 , CO 2 , HCl аргон дает двойные гидраты, т.е. смешанные клатраты.

Неон и аргон получают из воздуха путем его разделения при глубоком охлаждении. Аргон, в связи с его сравнительно высоким содержанием в воздухе, получают в значительных количествах, неон – в меньших.

Неон и аргон применяют в качестве наполнителей ламп накаливания, газосветных трубок (для неона характерно красное свечение, для аргона – сине-голубое). Аргон, как наиболее доступный из инертных газов, используют в металлургии, в частности при аргонно-дуговой сварке алюминиевых и алюминиевомагниевых сплавов.

Подгруппа криптона

Энергия ионизации элементов подгруппы криптона (Kr, Xe, Rn) характеризуются меньшими значениями энергии ионизации, чем типические элементы VIIIA группы, поэтому могут образовывать соединения обычного типа. Так, ксенон может проявлять степени окисления «+2», «+4», «+6», «+8».

Криптон применяют в электровакуумной технике, в смеси с ксеноном его используют в качестве наполнителя для различного вида осветительных ламп и трубок. Радиоактивный радон используют в медицине.

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии сульфата марганца с фтори­дом ксенона (II) в водном растворе выделилось 4,8 л газа (при температуре 20 °С и нормальном атмосферном давлении). Чему равна масса образовавшейся марганцовой кислоты?
Решение Запишем уравнение реакции:

5ХеF 2 + 2МnSО 4 + 8Н 2 О = 5Хе + 2Н 2 SО 4 + 10НF + 2НМnО 4

  1. История открытия инертных газов……………………………………………………………………….2
  2. Физические свойства инертных газов………………………………………………………………….4
  3. Физиологическое действие инертных газов…………………………………………………………..4
  4. Химические свойства инертных газов………………………………………………………………….4
  5. Применение инертных газов……………………………………………………………………………..7
  6. Список литературы…………………………………………………………………………………………8

История открытия инертных газов.

К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами. История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии (открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии — периодический закон Менделеева.Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа — аргона — произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток. Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось. Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин… Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. “Воздух при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка. Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18. Этим было доказано, что воздух содержит газ, плотность которого больше плотности азота… Я получил 100 см3 этого вещества и нашёл его плотность равной 19,9. Оно оказалось одноатомным газом”. Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Гелий впервые был идентифицирован как химический элемент в 1868 П. Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж. Локьер и П. Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э. Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий — инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У. Рамзай и почти одновременно шведские химики П. Клеве и Н. Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г. Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э. Резерфорд и Т. Ройдс установили, что?-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов. Вначале Рамзай и его сотрудники занялись минералами, природными водами, даже метеоритами. Результаты анализов неизменно оказывались отрицательными. Между тем, теперь мы это знаем — новый газ в них был. Но методами, существовавшими в конце прошлого века, эти «микроследы» не улавливались. Затем исследователи обратились к воздуху. Всего за четыре последующих года было открыто четыре новых элемента, при этом неон, криптон и ксенон были выделены из воздуха. Воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы. Затем, полученные фракции исследовали. Одним из методов поиска был спектральный анализ: газ помещали в разрядную трубку, подключали ток и по линиям спектра определяли «кто есть кто». Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. В момент, когда Рамзай наблюдал спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать «болельщиком» отцовых работ. Увидев необычное свечение, он воскликнул: «new one!» Так возникло название газа «неон», по-древнегречески значит «новый». После того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, уже не вызывало сомнений, что четвёртый, пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9, 3 л аргона и всего лишь 0, 08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон (“скрытый”). Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента! Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу. Заслуга открытия высшего представителя инертных газов принадлежит тому же Рамзаю. При помощи весьма тонких технических приёмов он доказал, что радиоактивное истечение из радия — эманация радия — представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Его молекулярный вес — около 220 — был Рамзаем измерен по скорости диффузии. Если предположить, что ядро атома эманации радия — это остаток ядра радия после выбрасывания из него ядра атома гелия — ?-частицы, то заряд его должен быть равен 88-2=86, т. е. новый элемент должен действительно быть инертным газом с атомным весом 226-4=222. Таким образом, после блестящих экспериментов 16 марта 1900 г. в Лондоне произошла встреча Менделеева и Рамзая, на которой было официально решено включить в периодическую систему новую группу химических элементов.

Все инертные газы имеют завершенную, устойчивую конфигурацию внешнего электронного уровня: у гелия это дублет, у остальных газов – октет. Каждый из них завершает соответствующий период в таблице Менделеева.

Инертные газы в природе

Все инертные газы, кроме радиоактивного радона, можно найти в составе атмосферного воздуха. Гелий – самый распространенный элемент после водорода. Солнце на 10% состоит из этого благородного газа, образуемого из водорода по реакции ядерного синтеза с выделением позитронов и антинейтрино.

Физические свойства благородных газов

Инертные газы представлены одноатомными молекулами. При обычных условиях гелий, неон, аргон, криптон и ксенон – газы без цвета и запаха, плохо растворимые в воде. Чем больше их , тем выше температуры кипения и плавления.

Гелий обладает уникальными свойствами: он остается жидким даже при самых низких температурах, вплоть до абсолютного нуля, не подвергаясь кристаллизации. Кристаллизовать гелий возможно лишь под давлением 25 атмосфер. Кроме того, у этого газа температура кипения из всех веществ.

Химические свойства благородных газов

Долгое время считалось, что инертные газы вообще не образуют соединений. Однако экспериментально при особых условиях были получены фториды и оксиды , существование которых было предсказано теоретиком Лайнусом Полингом.

Как применяют инертные газы

Благодаря своим выдающимся физико-химическим свойствам инертные газы широко используются в науке . Так, при помощи жидкого гелия получают сверхнизкие температуры, а смесь гелия и кислорода в соотношении 4:1 используется как искусственная атмосфера для дыхания водолазов.

Поскольку гелий – самый легкий газ после водорода, им часто наполняют дирижабли, зонды и аэростаты. Его подъемная сила равна 93% от подъемной силы водорода.

Неон, аргон, криптон и ксенон применяются в светотехнике – производстве газоразрядных трубок. При пропускании электрического тока через трубки, наполненные неоном или аргоном, газ начинает светиться, а цвет этого излучения зависит от давления газа.

Аргон как самый дешевый из благородных газов используется для создания инертной атмосферы при проведении химических реакций, продукты которых взаимодействуют с кислородом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Инертные газы – химические элементы восьмой группы периодической системы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. История их названия. Эмиссионный спектр неона. Физиологическое действие ксенона. Концентрация радона в воздухе.

    презентация , добавлен 14.04.2015

    История развития производства благородных металлов. Свойства и методы получения благородных металлов. Химические свойства. Физические свойства. Использование благородных металлов.

    реферат , добавлен 10.11.2002

    Изучение свойств благородных металлов и их сплавов: электропроводности, температуры плавления, стойкости к коррозии, сопротивляемости агрессивной среде. Характеристика области применения золота, серебра, платины, палладия, родия, иридия, рутения и осмия.

    реферат , добавлен 10.11.2011

    Описание интересных фактов открытия ряда элементов таблицы Менделеева. Свойства химических элементов, происхождение их названий. История открытия, в отдельных случаях получения элементов, их значение в народном хозяйстве, сфера применения, безопасность.

    реферат , добавлен 10.11.2009

    Сущность понятия "нефтяные газы". Характерная особенность состава попутных нефтяных газов. Нахождение нефти и газа. Особенности получения газа. Газовый бензин, пропан-бутовая фракция, сухой газ. Применение газов нефтяных попутных. Пути утилизации ПНГ.

    презентация , добавлен 18.05.2011

    Способы очистки углеводородных газов от Н2S, СO2 и меркаптанов. Схемы применения водных растворов аминов и физико-химических абсорбентов для извлечения примесей из природного газа. Глубокая осушка газа. Технология извлечения тяжелых углеводородов и гелия.

    контрольная работа , добавлен 19.05.2011

    Общая характеристика, отличительные признаки химических d-элементов. Кислотно-основные свойства оксидов и гидроксидов. D-элементы как хорошие комплексообразователи. Руды и способы их получения. Ряд напряжения металлов, их основные химические свойства.

    презентация , добавлен 22.04.2013

    Характеристика металлов - веществ, обладающих в обычных условиях высокой электропроводностью и теплопроводностью, ковкостью, "металлическим" блеском. Химические и физические свойства магния. История открытия, нахождение в природе, биологическая роль.

    презентация , добавлен 14.01.2011

В этой статье мы уделим внимание VIIIA -группе .

Это элементы: гелий (He ), неон (Ne ), аргон (Ar ), криптон (Kr ), ксенон (Xe ) (это основные), а так же радиоактивный радон (Rn ).

И формально сюда же можно отнести искусственно полученный унуноктий (Uuo ).

У этой группы элементов тоже есть свое название – аэрогены , но чаще их называют благородные , или инертные газы .

Инертные газы

Эти газы объединяет низкая реакционная активность. Под словом инертность как раз и понимается малоактивность. Поэтому об их существовании долгое время даже не догадывались. Определить их с помощью реакций нельзя. Обнаружили их в воздухе (отсюда и название аэрогены), удалив из него кислород и прочие «побочные газы», чтобы получить азот, и экспериментально установили, что полученный таким образом азот имеет примеси. Примесями этими и оказались инертные газы.

Чтобы понять, с чем связана низкая реакционная активность этих газов нужно построить их электронные диаграммы:

Мы можем видеть, что нет неспаренных электронов , орбитали заполнены. Это очень выгодное состояние электронной оболочки. Поэтому и все остальные элементы, образуя соединения, стремятся приобрести электронную конфигурацию благородных газов (вспомните правило октета), потому что она энергетически выгодная, а атомы, как и люди, выгоду любят.

Из-за малоактивности атомы благородных газов даже не соединяются в двухатомные молекулы (как это делают : O 2 , Cl 2 , N 2 и т.д.).

Благородные газы существуют в виде одноатомных молекул .

Говорить, что благородные газы абсолютно инертны нельзя. У некоторых аэрогенов есть свободные орбитали в пределах одного энергетического уровня, а это значит, что возможен процесс возбуждения электронов. В настоящее время в чрезвычайно экстремальных условиях получены некоторые соединения этих «ленивых» с точки зрения химической активности элементов. Но в школьной программе, а тем более в , это не рассматривается.

Физические свойства

  • гелий и неон легче воздуха, остальные благородные газы, которые находятся ниже – тяжелее, что обусловлено возрастанием атомной массы.
  • из-за химической инертности, вкусовые и обонятельные рецепторы не могут обнаружить присутствие благородных газов в воздухе, поэтому они не имеют ни вкуса, ни запаха.

Практическая значимость благородных газов.

Гелий – всем хорошо известный газ, для заполнения воздушных шариков, который делает голос смешным. Гелием заполняют дирижабли (этот газ, в отличие от водорода, не взрывоопасен).

Благородные газы используют для создания инертной (химически не активной) атмосферы. Некоторые аэрогены входят в состав дыхательных смесей, разбавляя собой кислород (кислород – сильный окислитель и дышать им в чистом виде нельзя).

При пропускании через благородные газы разряда тока, они имеют свойство ярко светиться. Что обеспечивает аэрогенам применение для осветительной аппаратуры. Выглядит довольно зрелищно.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: