Практическая психология

Принцип неопределенности лежит в плоскости квантовой механики, однако чтобы полноценно разобрать его, обратимся к развитию физики в целом. и Альберт Эйнштейн, пожалуй, в истории человечества. Первый еще в конце XVII века сформулировал законы классической механики, которой подчиняются все тела, окружающие нас, планеты, подвластные инерции и гравитации. Развитие законов классической механики привело научный мир к концу XIX века к мнению о том, что все основные законы природы уже открыты, и человек может объяснить любое явление во Вселенной.

Теория относительности Эйнштейна

Как оказалось, на тот момент была обнаружена лишь верхушка айсберга, дальнейшие изыскания подбросили ученым новые, совершенно невероятные факты. Так, в начале XX века было обнаружено, что распространение света (который имеет конечную скорость в 300 000 км/с) никак не подчиняется законам ньютоновской механики. Согласно формулам Исаака Ньютона, в случае если тело или волна испускается движущимся источником, его скорость будет равна сумме скорости источника и собственной. Однако волновые свойства частиц имели иную природу. Многочисленные опыты с ними продемонстрировали, что в электродинамике, молодой на тот момент науке, работает совершенно другой набор правил. Еще тогда Альберт Эйнштейн совместно с немецким физиком-теоретиком Максом Планком ввели свою знаменитую теорию относительности, описывающую поведение фотонов. Однако для нас сейчас важна не столько ее суть, сколько тот факт, что в этот момент была выявлена принципиальная несовместимость двух областей физики, совместить

которые, кстати, ученые пытаются и по сей день.

Рождение квантовой механики

Окончательно разрушило миф о всеобъемлющей классической механике изучение строения атомов. Опыты в 1911 году продемонстрировали, что атом имеет в своем составе еще более мелкие частицы (названные протонами, нейтронами и электронами). Более того, они также отказывались взаимодействовать по Изучение этих мельчайших частиц и породило новые для ученого мира постулаты квантовой механики. Таким образом, возможно, конечное понимание Вселенной лежит не только и не столько в изучении звезд, а в изучении мельчайших частиц, которые дают интереснейшую картину мира на микроуровне.

Принцип неопределенности Гейзенберга

В 1920-е годы делала свои первые шаги, а ученые лишь

осознавали, что же из нее вытекает для нас. В 1927 году немецкий физик Вернер Гейзенберг сформулировал свой знаменитый принцип неопределенности, демонстрирующий одно из главных отличий микромира от привычного нам окружения. Состоит он в том, что невозможно измерить одновременно скорость и пространственное положение квантового объекта уже потому, что при измерении мы оказываем на него воздействие, ведь и само измерение тоже осуществляется с помощью квантов. Если совсем банально: оценивая объект в макромире, мы видим отраженный от него свет и на основании этого делаем выводы о нем. Но в уже воздействие световых фотонов (или других производных измерения) оказывает влияние на объект. Таким образом, принцип неопределенности вызвал понятные сложности в изучении и предсказании поведения квантовых частиц. При этом, что интересно, можно измерять отдельно скорость или отдельно положение тела. Но если мы будем измерять одновременно, то чем выше будут наши данные о скорости, тем меньше мы будем знать о действительном положении, и наоборот.

· Опыт Поппера · Опыт Штерна - Герлаха · Опыт Юнга · Проверка неравенств Белла · Фотоэффект · Эффект Комптона

См. также «Физический портал»

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в г., является одним из краеугольных камней квантовой механики.

Краткий обзор

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана , так и для неидеальных измерений или измерений Ландау .

Согласно принципу неопределённостей, частица не может быть описана как классическая частица, то есть например у нее не могут быть одновременно точно измерено положение и скорость (импульс) , так же как у обычной классической волны и как волна . (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть ее координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки), ни определённым значением импульса (включая его направление; в примере с частицей в коробке модуль импульса определен, но не определено его направление).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).

Соотношение неопределенностей в квантовой механике есть в математическом смысле есть непосредственное прямое следствие некоего свойства преобразования Фурье .

Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов . Рассмотрим переменный во времени сигнал, например звуковую волну . Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временно́е положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что (или p x = k x в системе единиц ), то есть импульс в квантовой механике - это и есть пространственная частота вдоль соответствующей координаты.

В повседневной жизни мы обычно не наблюдаем квантовую неопределённость потому, что значение чрезвычайно мало, и поэтому соотношения неопределенностей накладывают такие слабые ограничения на погрешности измерения, которые заведомо незаметны на фоне реальных практических погрешностей наших приборов или органов чувств.

Определение

Если имеется несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что:

,

где - приведённая постоянная Планка .

Отметим, что это неравенство даёт несколько возможностей - состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x - нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

Варианты и примеры

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме, он применим к каждой паре сопряжённых переменных . В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером :

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор A B B A называют коммутатором A и B и обозначают как [A ,B ] . Он определен для тех x , для которых определены оба A B x и B A x .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если A B ψ и B A ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве:
  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:
где i , j , k различны и J i обозначает угловой момент вдоль оси x i .
  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
. Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид: .

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений, в случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация.

Интерпретации

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё, будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (). Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала

Хотя этот принцип и выглядит довольно странным, по своей сути он чрезвычайно прост. В квантовой теории, где положение объекта характеризуется квадратом амплитуды, а величина его импульса - длиной волны соответствующей волновой функции, этот принцип есть не что иное, как просто факт, характерный для волн: волна, локализованная в пространстве, не может иметь одну длину волны. Недоумение вызывается тем, что, говоря о частице, мы мысленно представляем ее классический образ, а затем удивляемся, когда обнаруживаем, что квантовая частица ведет себя не так, как ее классическая предшественница.

Если настаивать на классическом описании поведения квантовой частицы (в частности, если пытаться приписать ей как положение в пространстве, так и импульс), то максимальные возможные точности одновременного определения ее положения и импульса окажутся связанными между собой с помощью удивительно простого соотношения, впервые предложенного Гейзенбергом и получившего название принципа неопределенности:

где - неточности, или неопределенности, значений импульса и положения частицы. Произведение неточностей импульса и положения

оказывается порядка величины постоянной Планка. В квантовой теории в отличие от классической невозможно одновременно локализовать квантовую частицу и приписать ей определенный импульс Поэтому такая частица не может обладать и траекторией в том же смысле, что классическая частица. Мы имеем в виду отнюдь не психологическую неопределенность. Эта неопределенность характеризует природу такого объекта, который не может одновременно обладать двумя свойствами-положением и импульсом; объекта, отдаленно напоминающего шторм в атмосфере: если он простирается на большие расстояния, то дуют слабые ветры; если же он сконцентрирован в небольшой области, то возникает ураган или тайфун.

Принцип неопределенности содержит в удивительно простой форме то, что было так трудно сформулировать, используя волну Шредингера. Если имеется волновая функция с заданной длиной волны или с заданным импульсом, то ее положение является полностью неопределенным, так как вероятности нахождения частицы в различных точках пространства равны между собой. С другой стороны, если частица полностью локализована, ее волновая функция должна состоять из суммы всех возможных периодических волн, так что ее длина волны или импульс оказываются абсолютно неопределенными. Точное соотношение между неопределенностями положения и импульса (которое получается непосредственно из волновой теории и не связано особым образом с квантовой механикой, так как оно характеризует природу любых волн - звуковых волн, волн на поверхности воды или волн, бегущих вдоль натянутой пружины) дается в простой форме принципом неопределенности Гейзенберга.

Вспомним рассмотренную ранее частицу, одномерное движение которой происходило между двумя стенками, расположенными на расстоянии друг от друга. Неопределенность положения такой частицы не превышает расстояния между стенками, так как мы знаем, что частица заключена между ними. Поэтому величина равна или меньше

Положение частицы, конечно, может быть локализовано в более узких пределах. Но если задано, что частица просто заключена между стенками, ее координата х не может выйти за пределы расстояния между этими стенками. Следовательно, неопределенность, или отсутствие

знания, ее координаты х не может превышать величину I. Тогда неопределенность импульса частицы больше или равна

Импульс связан со скоростью по формуле

следовательно, неопределенность скорости

Если частица-электрон и расстояние между стенками равно см. то

Таким образом, если частица с массой электрона локализована в области, размеры которой порядка то говорить о скорости частицы можно лишь с точностью до см/с,

Используя результаты, полученные ранее, можно найти соотношение неопределенности для волны Шредингера в случае частицы, заключенной между двумя стенками. Основному состоянию такой системы соответствует смесь в равных долях решений с импульсами

(В классическом случае электрон мечется от стенки к стенке, причем его импульс, оставаясь все время равным по величине изменяет свое направление при каждом соударении со стенкой.) Так как импульс изменяется от до его неопределенность равна

Из соотношения де Бройля

а для основного состояния

В то же время

Следовательно,

Этот результат можно использовать для оценки наименьшего значения энергии, которым может обладать квантовая система. Ввиду того что импульс системы - неопределенная величина, эта энергия в общем случае не равна нулю, что радикально отличает квантовую систему от классической. В классическом случае энергия рассматриваемой частицы совпадает с ее кинетической энергией, и когда частица покоится, эта энергия обращается в нуль, Для квантовой системы, как было показано выше неопределенность импульса находящейся в системе частицы составляет

Импульс такой частицы нельзя определить точно, так как возможные его значения лежат в интервале шириной Очевидно, если нуль лежит посредине этого интервала (фиг. 127), то импульс будет изменяться по величине в пределах от нуля до Следовательно, минимальный возможный импульс, который можно приписать частице, равен в силу принципа неопределенности

При меньших значениях импульса принцип неопределенности нарушится. Энергию, соответствующую этому импульсу,

можно сравнить с наименьшей энергией, величину которой мы вычислили с помощью уравнения Шредингера, подбирая подходящую стоячую волну между стенками сосуда:

Ценность полученного результата состоит не в численном согласии, а в том, что нам удалось провести грубую оценку величины минимальной энергии, используя лишь принцип неопределенности. Кроме того, нам удалось понять, почему минимальное значение кинетической энергии квантовомеханической системы (в отличие от классической системы) никогда не равно нулю. Соответствующая классическая частица, заключенная между стенками, обладает нулевой кинетической

энергией, когда она находится в покое. Квантовая же частица не может покоиться, если она захвачена между стенками. Ее импульс или скорость существенно неопределенны, что проявляется в увеличении энергии, причем это увеличение в точности совпадает с тем значением, которое получается из строгого решения уравнения Шредингера.

Этот весьма общий результат имеет особенно важные следствия в том разделе квантовой теории, который соответствует классической кинетической теории, т. е. в квантовой статистике. Широко известно, что температура системы, как утверждает кинетическая теория, определяется внутренним движением составляющих систему атомов. Если температура квантовой системы высока, то нечто весьма похожее на это действительно имеет место. Однако при низких температурах квантовые системы не могут прийти к абсолютному покою. Минимальная температура соответствует наинизшему из возможных состояний данной системы. В классическом случае все частицы находятся в покое, а в квантовом - энергия частиц определяется из выражения (41.17), что не соответствует покою частиц.

Из всего сказанного может создаться впечатление, что мы уделяем слишком много внимания электронам, заключенным между двумя стенками. Наше внимание к электронам вполне оправдано. А к стенкам? Если проанализировать все рассмотренные ранее случаи, то можно убедиться в том, что вид силовой системы, будь то сосуд или что-нибудь иное, удерживающей электрон в ограниченной области пространства, не так уже существен.

Две стенки, центральная сила или различные препятствия (фиг. 128) приводят к примерно одинаковым результатам. Не столь уж важен вид конкретной системы, которая удерживает электрон. Гораздо важнее, что электрон вообще захвачен, т. е. его волновая функция локализована. В результате эта функция представляется в виде суммы периодических волн и импульс частицы становится неопределенным, причем

Проанализируем теперь с помощью принципа неопределенности одно типично волновое явление, а именно расширение волны после прохождения ею небольшого отверстия (фиг. 129). Это явление мы уже разбирали геометрическим способом, вычисляя расстояния, на

которых горбы пересекаются с впадинами., В том, что теперь результаты окажутся сходными, нет ничего удивительного. Просто одна и та же теоретическая модель описывается разными словами. Допустим, что электрон попадает в отверстие в экране, двигаясь слева направо. Нас интересует неопределенность положения и скорости электрона в направлении х (перпендикулярном направлению движения). (Соотношение неопределенности выполняется для каждого из трех направлений в отдельности: Ах-Архжк,

Обозначим ширину щели через эта величина является максимальной погрешностью определения положения электрона в направлении х, когда он проходил через отверстие, чтобы проникнуть за экран. Отсюда мы можем найти неопределенность импульса или скорости частицы в направлении я:

Следовательно, если мы допускаем, что электрон проходит сквозь отверстие в экране шириной мы должны признать, что его скорость при этом станет неопределенной с точностью до величины

В отличие от классической частицы квантовая не может, пройдя сквозь отверстие, дать на экране четкое изображение.

Если она движется со скоростью в направлении экрана, а расстояние между экраном и отверстием равно то она пройдет это расстояние за время

За это время частица сместится в направлении х на величину

Угловой разброс определяется как отношение величины смещения к длине

Таким образом, угловой разброс (интерпретируемый как половина углового расстояния до первого дифракционного минимума) равен длине волны, деленной на ширину отверстия, что совпадает с результатом, полученным ранее для света.

А что можно сказать об обычных массивных частицах? Являются ли они квантовыми частицами или частицами ньютоновского типа? Следует ли пользоваться механикой Ньютона в случае объектов обычных размеров и квантовой механикой в случае объектов, размеры которых малы? Мы можем считать все частицы, все тела (даже Землю) квантовыми. Однако, если размеры и масса частицы соизмеримы с размерами и массами, которые обычно наблюдаются в макроскопических явлениях, то квантовые эффекты - волновые свойства, неопределенности положения и скорости - становятся слишком малыми, чтобы быть обнаружимыми в обычных условиях.

Рассмотрим, например, частицу, о которой мы говорили выше. Допустим, что эта частица - металлический шарик от подшипника с массой в одну тысячную грамма (очень маленький шарик). Если мы локализуем его положение с точностью, доступной нашему зрению, в поле микроскопа, скажем с точностью до одной тысячной сантиметра, то локализованного на длине см, неопределенность скорости оказывается слишком маленькой величиной, чтобы быть обнаруженной при обычных наблюдениях.

Соотношения неопределенности Гейзенберга связывают не только положение и импульс системы, но и другие ее параметры, которые в классической теории считались независимыми. Одним из наиболее интересных и полезных для наших целей соотношений является связь между неопределенностями энергии и времени. Обычно ее записывают в виде

Если система находится в определенном состоянии в течение длительного промежутка времени, то энергия этой системы известна с большой точностью; если же она находится в этом состоянии в течение очень короткого интервала времени, то ее энергия становится неопределенной; этот факт точно описывается соотношением, приведенным выше.

Это соотношение обычно применяют при рассмотрении перехода квантовой системы из одного состояния в другое. Допустим, например, что время жизни какой-то частицы равно , т. е. между моментом рождения этой частицы и моментом ее распада проходит время порядка с. Тогда максимальная точность, с которой может быть известна энергия этой частицы, равна

что составляет весьма небольшую величину. Как мы увидим позднее, существуют так называемые элементарные частицы, время жизни которых порядка с (время между моментом рождения частицы и моментом ее аннигиляции). Таким образом, промежуток времени, в течение которого частица находится в определенном состоянии, очень мал, и неопределенность энергии оценивается как

Эта величина, 4-106 эВ (миллион электронвольт кратко обозначается символом МэВ), огромна; вот почему, как мы увидим позже, таким элементарным частицам, иногда называемым резонансами, приписывают не точное значение энергии, а целый спектр значений в довольно широком диапазоне.

Из соотношения (41.28) можно также получить так называемую естественную ширину уровней квантовой системы. Если, например, атом переходит с уровня 1 на уровень 0 (фиг. 130), то энергию уровня

Тогда разброс значений энергии этого уровня определяется из выражения:

Это типичная естественная ширина энергетических уровней атомной системы.

Принципы неопределенности Гейзенберга являются одной из проблем квантовой механики, однако прежде мы обратимся к развитию физической науки в целом. Еще в конце XVII века Исааком Ньютоном была заложена современная классическая механика. Именно он сформулировал и описал ее основные законы, при помощи которых можно предсказать поведение окружающих нас тел. К концу XIX века эти положения казались нерушимыми и применимыми ко всем законам природы. Задачи физики как науки, казалось, были решены.

Нарушение законов Ньютона и рождение квантовой механики

Но, как выяснилось, на тот момент о свойствах Вселенной было известно существенно меньше, чем казалось. Первым камнем, нарушившим стройность классической механики, стало неподчинение ее законам распространения световых волн. Таким образом, совсем молодая на тот момент наука электродинамика была вынуждена выработать совершенно иной свод правил. А для физиков-теоретиков возникла проблема: как привести две системы к единому знаменателю. Кстати, наука и сегодня работает над ее решением.

Миф о всеобъемлющей ньютоновской механике был окончательно разрушен с более глубоким изучением строения атомов. Британец Эрнест Резерфорд обнаружил, что атом не является неделимой частицей, как считалось ранее, а сам имеет в своем составе нейтроны, протоны и электроны. Более того, их поведение также совершенно не вязалось с постулатами классической механики. Если в макромире гравитация в значительной степени определяет природу вещей, то в мире квантовых частиц она является крайне малой силой взаимодействия. Так были заложены основы квантовой механики, в которой тоже действовали собственные аксиомы. Одним из показательных отличий этих мельчайших систем от привычного нам мира стал принцип неопределенности Гейзенберга. Он наглядно продемонстрировал необходимость отличного подхода к этим системам.

Принцип неопределенности Гейзенберга

В первой четверти XX века квантовая механика совершала свои первые шаги, а физики всего мира лишь осознавали, что же вытекает для нас из ее положений, и какие она открывает перспективы. Немецкий физик-теоретик Вернер Гейзенберг свои знаменитые принципы сформулировал в 1927 г. Заключаются принципы Гейзенберга в том, что невозможно просчитать одновременно и пространственное положение, и скорость квантового объекта. Основной причиной этому является тот факт, что при измерении мы уже воздействуем на измеряемую систему, тем самым нарушая ее. Если в знакомом нам макромире мы оцениваем объект, то, бросая на него даже взгляд, мы видим отражение света от него.

Но принцип неопределенности Гейзенберга говорит о том, что хоть в макромире свет никак не влияет на измеряемый объект, а в случае с квантовыми частицами фотоны (или любые другие производные измерения) оказывают значительное влияние на частицу. При этом интересно отметить, что отдельно скорость или отдельно положение тела в пространстве квантовая физика измерить вполне может. Но чем более точными будут наши показания скорости, тем меньше нам будет известно о пространственном положении. И наоборот. То есть принцип неопределенности Гейзенберга создает известные сложности в предсказании поведения квантовых частиц. Буквально это выглядит так: они меняют свое поведение, когда мы пытаемся за ними наблюдать.

Понятия вероятности оказались очень полезны при описании поведения газа, состоящего из огромного количества молекул. Немыслимо же в самом деле пытаться определить положение и скорость каждой из 1022 мокекул! Когда впервые теория вероятности была применена к таким явлениям, то это рассматривалось просто как удобный способ работы в столь сложной обстановке. Однако теперь мы полагаем, что вероятность существенно необходима для описания различных атомных процессов. Согласно квантовой механике, этой математической теории малых частичек, при определении положения частички и ее скорости всегда существует некоторая неопределенность.

В лучшем случае мы можем только сказать, что существует какая-то вероятность того, что частица находится вблизи точки х.
Для описания местоположения частицы можно ввести плотности вероятности р 1 {х), так что р 1 (х)∆х будет вероятностью того, что частица находится где-то между х и х + ∆х. Если положение частицы установлено достаточно хорошо, то примерный вид функции р 1 (х) может иллюстрировать график, приведенный на фиг. 6.10, а. Точно такое же положение и со скоростью частицы: она тоже неизвестна нам точно. С некоторой вероятностью p 2 (υ)∆υ частица может двигаться со скоростью, находящейся в интервале между υ и υ + ∆υ.
Один из основных результатов квантовой механики состоит в том, что эти две плотности p 1 (x) и p 2 (υ) не могут быть выбраны независимо в том смысле, что они обе не могут быть сколь угодно узкими. Если мы возьмем «полуширины» кривых р 1 (х) и p 2 (υ) и обозначим их соответственно [∆x] и [∆υ] (см. фиг. 6.10), то природа требует, чтобы произведение этих двух полуширин было не меньше величины h/m, где m - масса частицы, a h- некоторая фундаментальная физическая постоянная, называемая постоянной Планка. Это соотношение записывается следующим образом:

и называется принципом неопределенности Гейзенберга.
Чтобы это соотношение выполнялось, частица должна себя вести очень курьезно. Вы видите, что правая часть соотношения (6.22) постоянна, а это означает, что если мы попытаемся «приколоть» частицу в каком-то определенном месте, то эта попытка окончится тем, что мы не сможем угадать, куда она летит и с какой скоростью. Точно так же если мы попытаемся заставить частицу двигаться очень медленно или с какой-то определенной скоростью, то она будет «расплываться», и мы не сможем точно указать, где она находится.
Принцип неопределенности выражает ту неясность, которая должна существовать при любой попытке описания природы. Наиболее точное и полное описание природы должно быть только вероятностным. Однако некоторым физикам такой способ описания приходится не по душе. Им кажется, что о реальном поведении частицы можно говорить только, когда одновременно заданы импульсы и координаты. В свое время на заре развития квантовой механики эта проблема очень сильно волновала Эйнштейна. Он часто качал головой и говорил: «Но ведь не гадает же господь бог «орел - решка», чтобы решить, куда должен двигаться электрон!» Этот вопрос беспокоил его в течение очень долгого времени, и до конца своих дней он, по-видимому, так и не смог примириться с тем фактом, что вероятностное описание природы - это максимум того, на что мы пока способны. Есть физики, которые интуитивно чувствуют, что наш мир можно описать как-то по-другому, что можно исключить эти неопределенности в поведении частиц. Они продолжают работать над этой проблемой, но до сих пор ни один из них не добился сколько-нибудь существенного результата.
Эта присущая миру неопределенность в определении положения частицы является наиболее важной черто й описания структуры атомов. В атоме водорода, например, который состоит из одного протона, образующего ядро, и электрона, находящегося где-то вне его, неопределенность в местонахождении электрона такая же, как и размеры самого атома! Мы не можем поэтому с уверенностью сказать, где, в какой части атома находится наш электрон, и уж, конечно, не может быть и речи ни о каких «орбитах». С уверенностью можно говорить только о вероятности p(r)∆V обнаружить электрон в элементе объема ∆V на расстоянии r от протона. Квантовая механика позволяет в этом случае вычислять плотности вероятности р(r), которая для невозмущенного атома водорода равна Ае -r2/а2 . Это - колоколообразная функция наподобие изображенной на фиг. 6.8, причем число а представляет собой характерную величину радиуса, после которого функция очень быстро убывает. Несмотря на то что существует вероятность (хотя и небольшая) обнаружить электрон на большем, чем а, расстоянии от ядра, мы называем эту величину «радиусом атома». Она равна приблизительно 10 -10 м.

Если вы хотите как-то представить себе атом водорода, то вообразите этакое «облако», плотность которого пропорциональна плотности вероятности. Пример такого облака показан на фиг. 6.11. Такая наглядная картинка, пожалуй, наиболее близка к истине, хотя тут же нужно помнить, что это не реальное «электронное облако», а только «облако вероятностей». Где-то внутри него находится электрон, но природа позволяет нам только гадать, где же именно он находится.
В своем стремлении узнать о природе вещей как можно больше современная физика обнаружила, что существуют вещи, познать которые точно ей никогда не удастся. Многому из наших знаний суждено навсегда остаться неопределенным. Нам дано знать только вероятности.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: